TRANSFORMING MICROBIOLOGY:

Using Kaizen Events to Produce Short Bursts of Improvement that is Easily Sustained

> Mary Ann Womack, MBA (ASCP) SBB Process Improvement Manager Certified Lean Sigma Green Belt

The skill to heal. The spirit to care.

Florida Hospital Celebration Health

Florida Hospital Orlando

NSBUR

G

Florida Hospital Apopka

Florida Hospital Kissimmee

ii H

100 100

Florida Hospital Altamonte

Florida Hospital East Orlando

Florida Hospital Winter Park

A DECIMAL OF THE

Objectives

- Implementing Lean Six Sigma in the Clinical Microbiology Laboratory for improved cost savings with increased clinical delivery demands
- Implementing change quickly and with minimal costs, using a Kaizen model
- Centralizing of key processes without reduction in service
- Survival in 'ACO mandated cut' environment

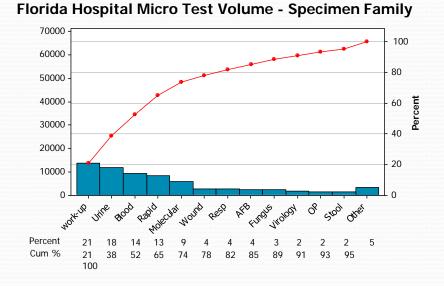
Common Denominator

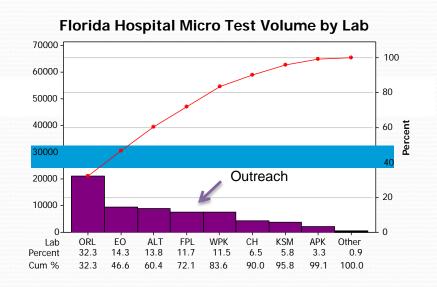
- How do hospital and lab administration manage with decreasing budgets and revenue?
 - Employ Lean Six Sigma
 - Focus on cost savings with improved efficiencies
 - Make changes quickly with minimal costs
- Strategy at Florida Hospital withACO Mandated Cuts
 - Ratchet down costs
 - Insurance companies going to a DRG model
 - Decreased utilization (cost avoidance)
 - Avoid penalties through HCAAPS

Florida Hospital Background

- Centralized Microbiology from 7 campuses to 1 core lab:
 - *Before*: campuses streaked plates and sent plates and specimens to Orlando Microbiology
 - Now: campuses send specimens only to Orlando Micro
 - Only rapid tests and stat gram stains are done at the campuses
 - Campuses pre-sort when sending batches by eswabs/urines/blood cultures
 - Implemented boric acid tubes for all Urine C&Ss

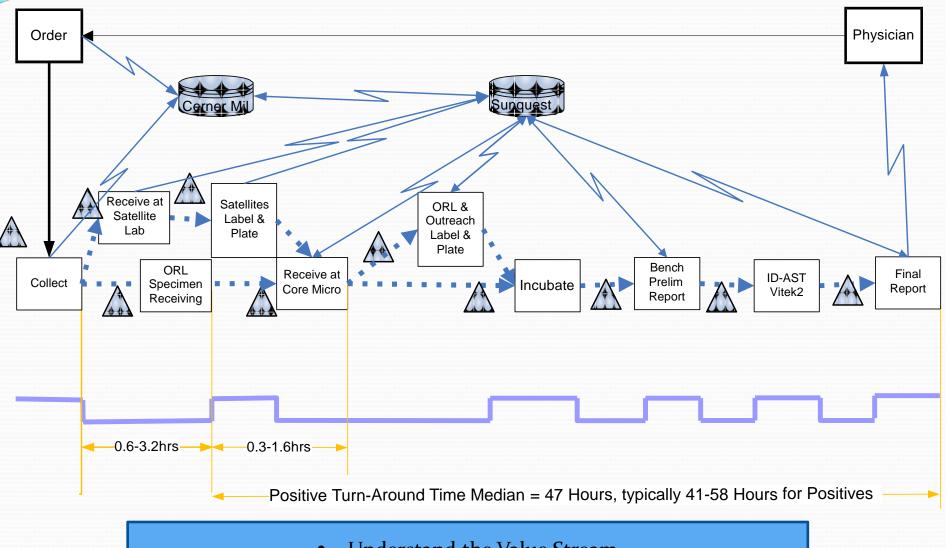
Why Change?


- Staffing
 - It take 1 year to begin to understand Micro
 - It takes 5 years to have an understanding of Micro
 - "Seasoned" staff is heading towards retirement
- Timely Resulting
 - Infectious Disease Physicians to act on results
 - The hospital wants to move patients out of rooms; Reduce LOS, thus reduce costs to the hospital


Base Line

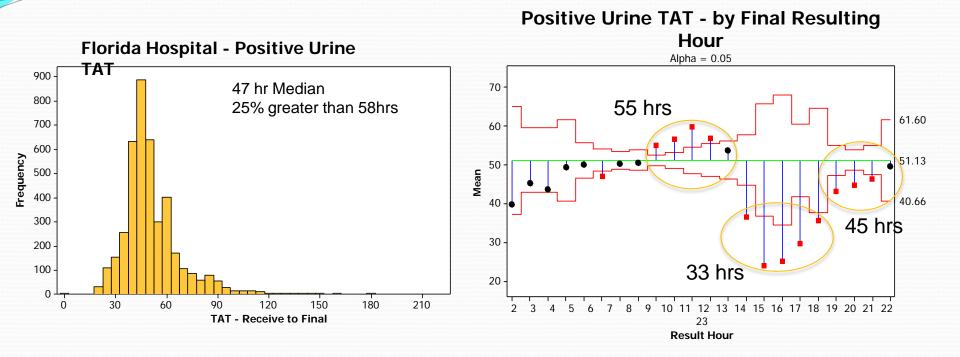
2010 - 2012

CURRENT STATE


Test Volume

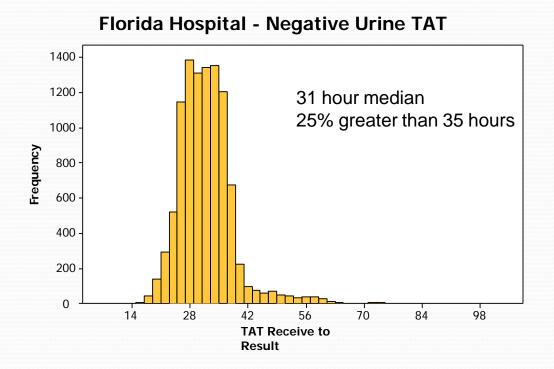
Understand what to address 1st

Florida Hosp Micro - Urine Value Stream


- Understand the Value Stream
- Identify where the "waste" is and where the opportunities are

History of Performance

Turn Around Time – Receive to Final


TAT (Hours)	2010	Jan-Feb 2013
Positives		
Median	47	39
Q3	58	48
Negatives		
Median		23
Q3		25

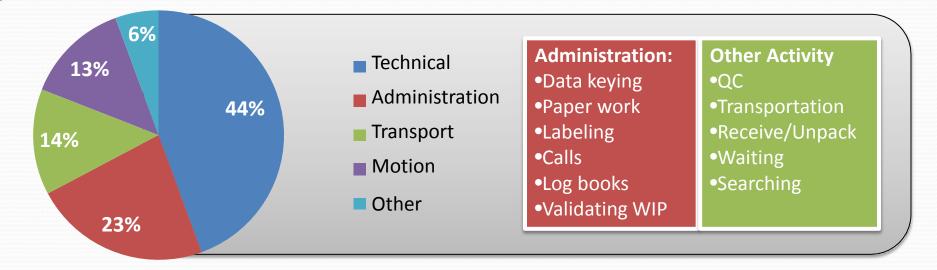
Positive Urine – Turn Around Time (Hours)

1St Opportunity: 10-15 hour difference between peaks seems to be driven by the 9 to 9 MST cut-off for plate reading schedule.

Negative Urine – Turn Around Time (Hours)

2nd Opportunity: Although we had a 24 hour protocol for negative urine only 7% were actually reported at 24 hours

Other Waste Opportunities


As much as 3 hours *delay* in getting plates to the incubator

Negative cultures wait to be resulted until positives completed

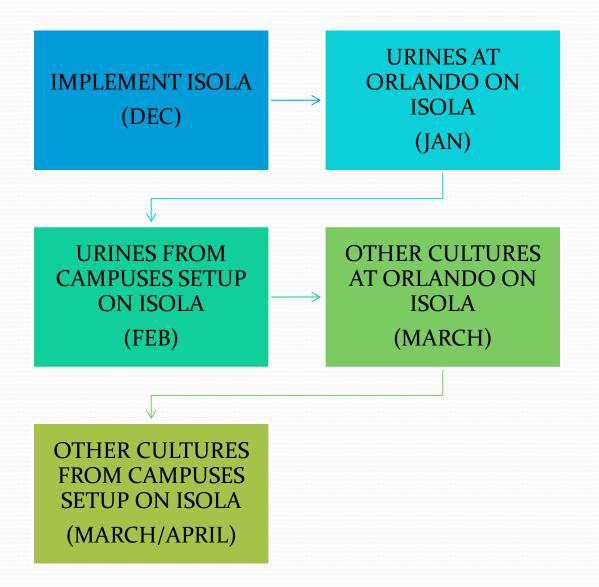
Vitek 2 *batched* and *wait* for available resource

Account for all specimens on inactivity list and overdue log (avoids 40 hrs/month)

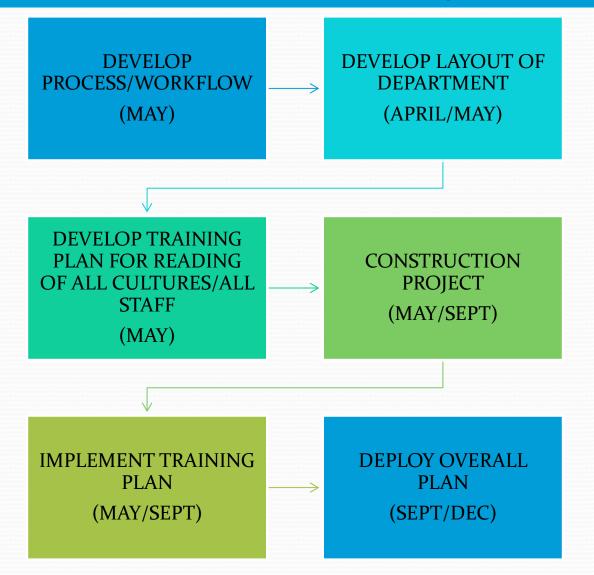
Technical/Processor Capacity Utilization

45-50% of time in micro lab is on technical task, 27% transport/motion, 23% admin

Opportunity to leverage cellular processing, new layout, daily management, and schedule changes to improve the Ratio


Resources

- External Consultants
 - "Fresh eyes" approach
 - Bring experiences from other facilities
- Internal Consultants
 - Formal DMAIC project on blood
 - Microbiology Workflow PI Project
 - Laboratory Process Improvement Manager



ALL CAMPUSES PHASE I: ISOLA IMPLEMENTATION WITH ALL CULTURES (2013)

ORLANDO MICRO PHASE II: NEW PROCESS IMPLEMENTATION (2013)

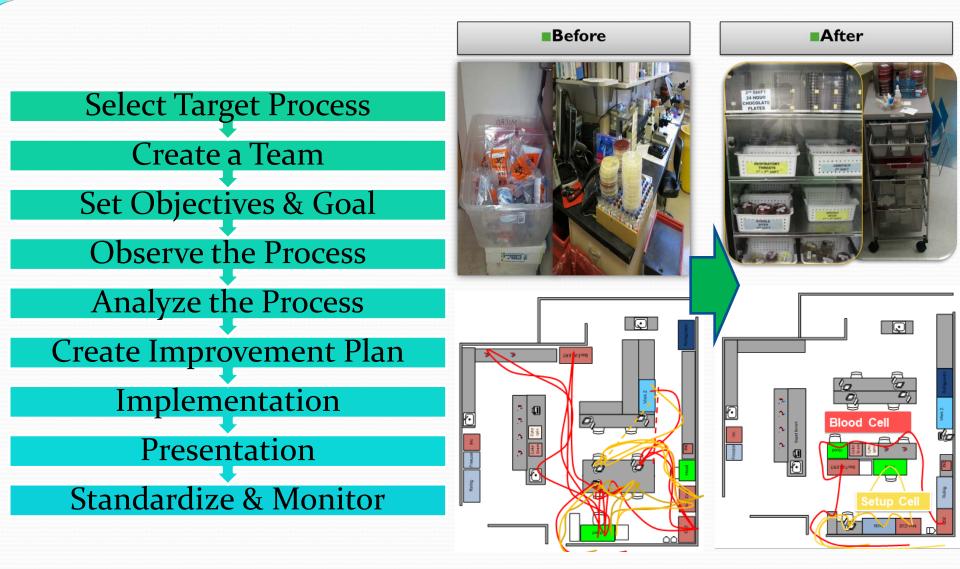
Microbiology: How it Looks Today

Challenges in Micro - Orlando

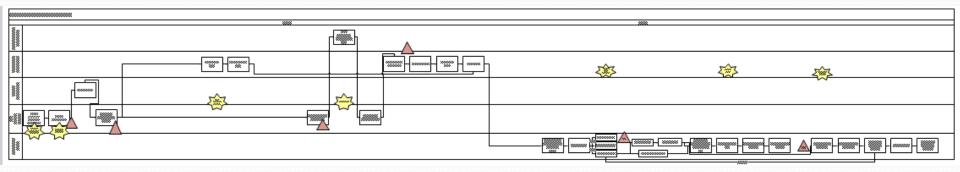
- Cross train all staff to "read" plates on all shifts
- Reading on one shift is no longer sufficient
- Low employee satisfaction
- Shortage of qualified technologists, high turnover
- Retirement of "seasoned" techs in the next 5 years
- Limited space, crowded, 35+ years old
- Staffing mismatched with incoming workload

Solutions

- Brought in outside consultants to assist with Kaizen process improvement projects
 - Assessment: 10/12
- Review current process; Kaizen event (05/13), ongoing continuous improvement
- Implement new technology with process change, 03/13
- Plan a space redesign, 5/13
- Scheduling to match staff to workflow -ongoing

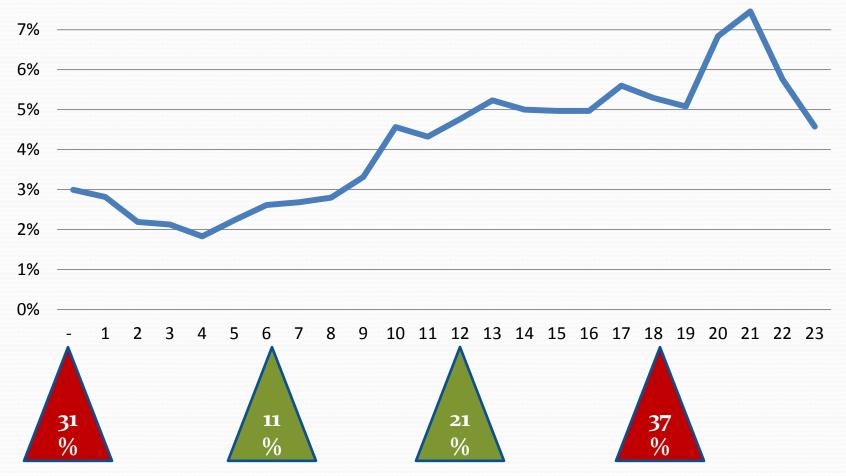

Transformation – Urine Kaizen May 2013

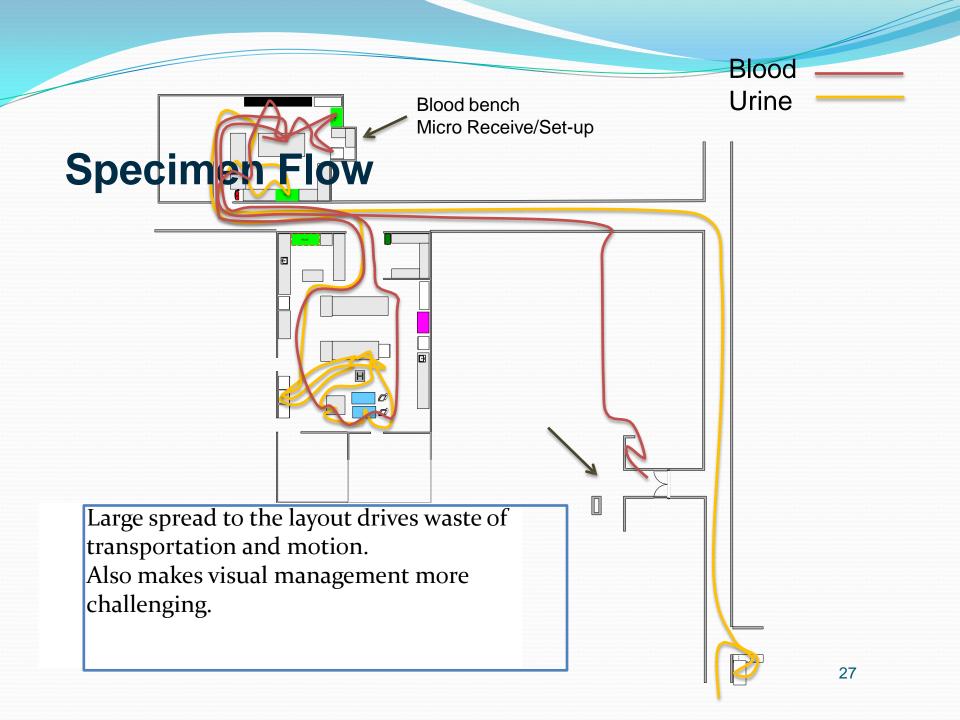
Implementing Technology

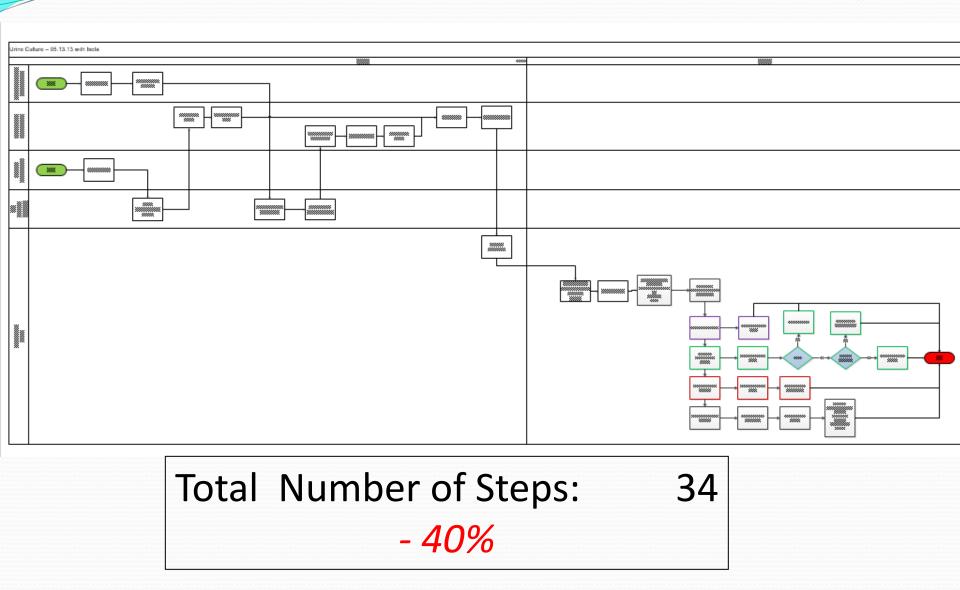

- Previ Isola
- 40% reduction in time to plate
- Consistency in plating
- 2nd Isola installed 06/13 (Plan B)

Kaizen – Rapid Improvement

Pre-Kaizen Urine Process Map


Total Number of Steps: 56


Enlisting Help – Robotic Delivery



Arrival Pattern - Hour

Post Kaizen Urine Process Map

Future State - Concept

Daily cycles

Hour	Total	Avg / Day Received	%	+18 hrs	New Batches	Racks			
0	539	12	3%	12					
1	505	11	3%	13					ist
2	429	10	3%	10					g ii
3	400	9	2%	12	52	2.0			3rd Shift Technologist
4	388	9	2%	17					le g
5	401	9	2%	16					Це Г
6	520	12	3%	16	46	1.8	st		
7	578	13	4%	19			Shift Technologist		
8	452	10	3%	19			olo		
9	556	12	3%	17	55	2.1	ĥn		
10	761	17	5%	18			ec		
11	732	16	4%	20			ft T		
12	741	16	4%	20	56	2.1	hił		
13	866	19	5%	20			1st S		
14	850	19	5%	21			1.		
15	784	17	5%	25	61	2.4		st	
16	820	18	5%	17				gi	
17	894	20	5%	14				6	
18	901	20	5%	12	55	2.1		hn	
19	915	20	6%	11				e	
20	951	21	6%	10				Shift Technologist	
21	1,106	25	7%	9				Shi	
22	751	17	5%	9	42	1.6		p	
23	636	14	4%	9				2nd	
Grand Total	16,476	366			366				

New Urine Culture Processing

New Batch

Process

Day 0	
Set-Up Time	Plate Rack Color
04:00-08:59	
09:00-11:59	
12:00-14:59	
13:00-17:59	
18:00-20:59	
21:00-23:59	
0:00-03:49	

	Day 1 Urine Culture Pull from Incubator				
	Read				
Read Time	Plate Rack Color	Too Young/Further Workup	er Final ID/Sens Ready Cath L		
3:00		3:00	3:00	3:00	
6:00		6:00	6:00	6:00	
9:00		9:00	9:00	9:00	
12:00		12:00	12:00	12:00	
15:00		15:00	15:00	15:00	
18:00		18:00	18:00	18:00	
22:00		22:00	22:00	22:00	

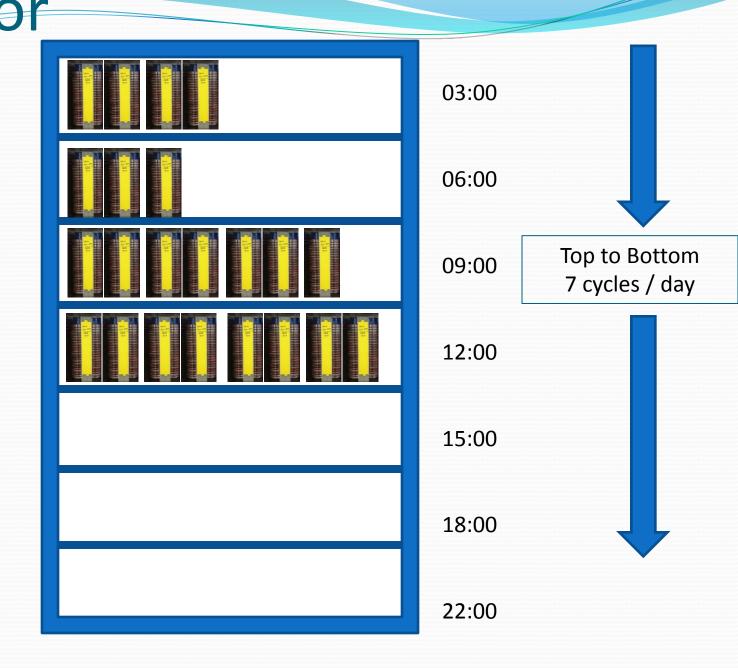
Day 1+ Urine Culture Placement for Incubation Place in Labeled Containers (Empty)				
3:00	12:00	18:00	3:00	
6:00	15:00	22:00	6:00	
9:00	18:00	3:00	9:00	
12:00	22:00	6:00	12:00	
15:00	3:00	9:00	15:00	
18:00	6:00	12:00	18:00	
22:00	9:00	15:00	22:00	

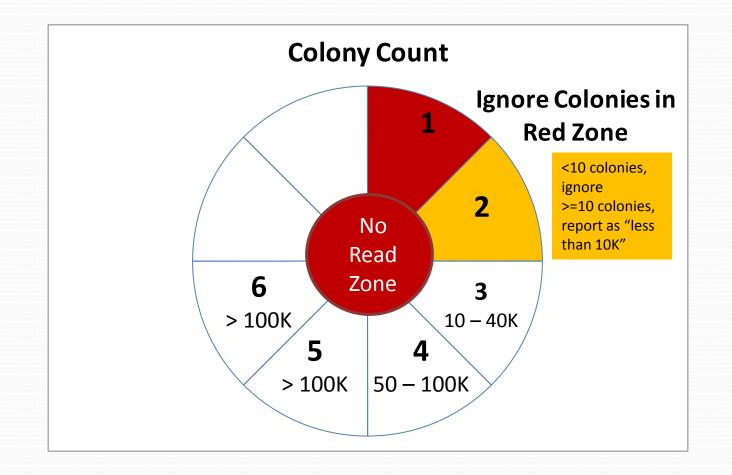
Daily Workflow

	Task
1	
	a. Correct color / time
	b. TY
	c. AST
	d. Cath
2	Pull empty buckets from shelf
3	Cath
	Empty bucket on shelf
4	AST Final Prelim Report
	Save
	Rework ->AST in time bucket
5	ТҮ
	Empty bucket on shelf
	AST in time bucket
6	New color read
	Triage -> trash
	Mixed -> save
	Positives -> AST in time bucket
	- TY
	- Cath

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00

Implementation! In 3 days!





Incubator #13 – **Batch** Visual Control


Urine Reading Template

It was discovered that we were over-reporting on urines!

Visual Aids and Standards

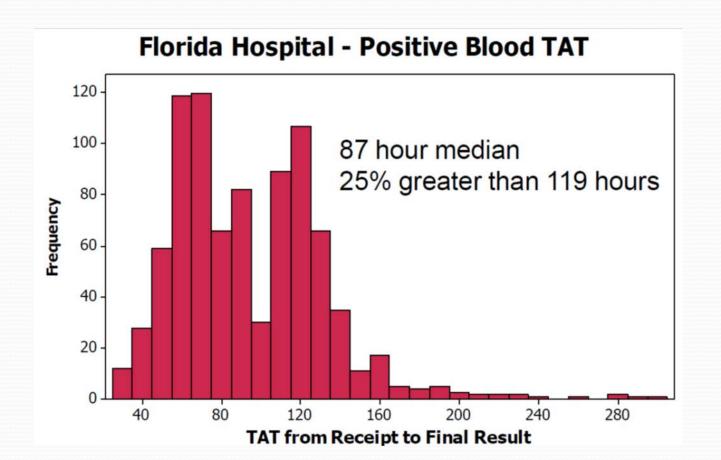
URINE POUR OFF'S FOR MICROBIOLOGY GUIDE FOR VOLUME

Only 3 ml's are needed to pour off in to gray top tubes for Micro. This red line indicates where 3 ml's are located on the cups; very low, barely covering the bottom of the cup.

Isola Poka Yoke, to reduce errors and facilitate identification Later, added "arrows" to limit batch size between the 5 & 6 slots!

Pre-Kaizen History of Performance

TAT (Hours)	2010	Jan-Feb 2013	Goal	Improvement
Positives				
Median	47	39	30	23%
Q3	58	48	33	31%
Negatives				
Median		23	21	9%
Q3		25	24	4%

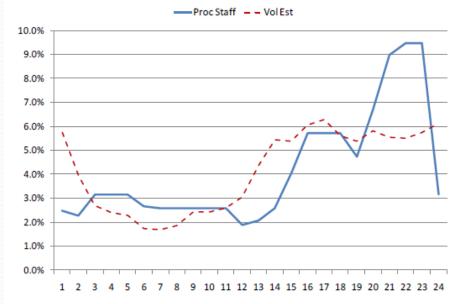

Current Performance

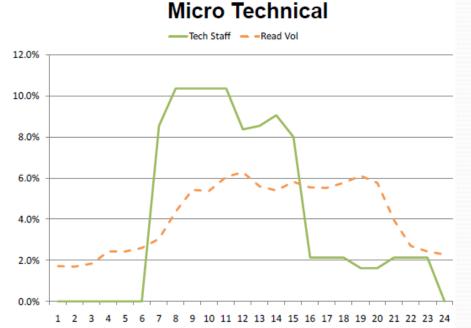
URIN	URINE CULTURE TURN-AROUND-TIME					
TAT(Hours)	2010	Feb, 2013	June	Sept	Goal	
Positives						
Median	47	39	37	33	30	
Q3	58	48	41	38	33	
Negatives						
Median	31	23	20:44	20:31	21	
Q3	47	25	21:56	21:49	24	

Transformation – Blood Cultures Fall 2013

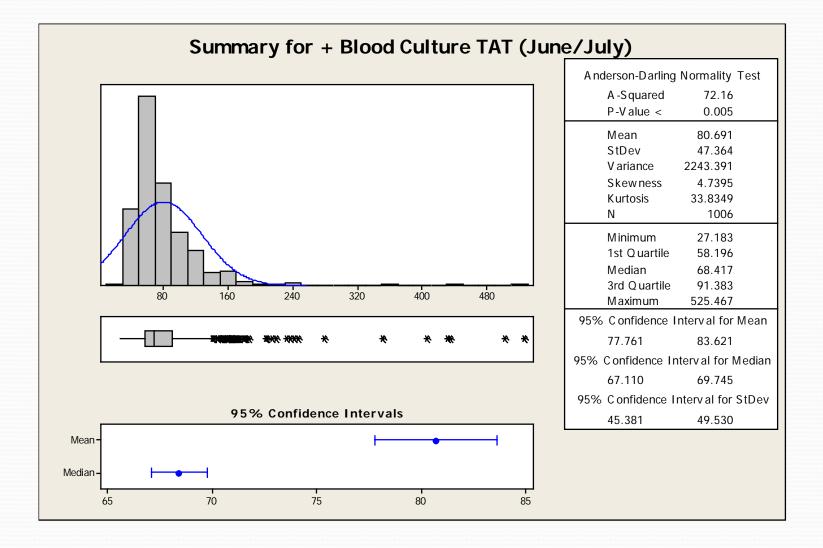
Findings – Blood Culture TAT

Pre 2011 DMAIC Project Data

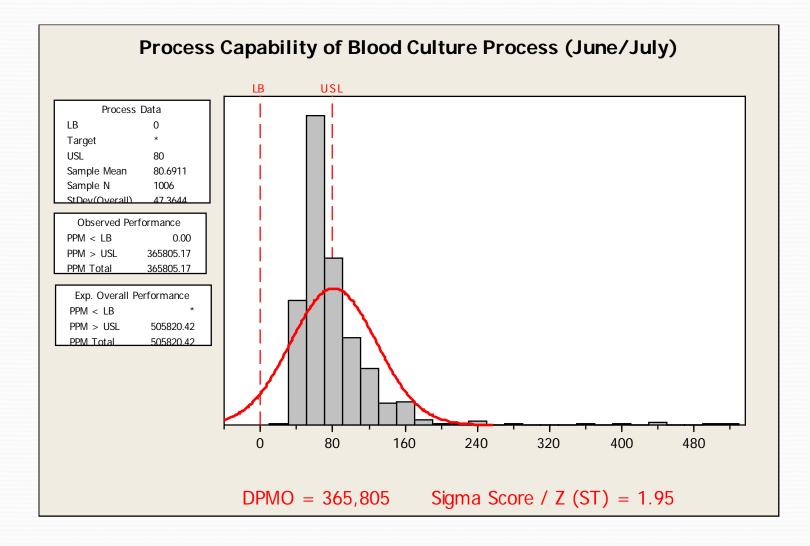


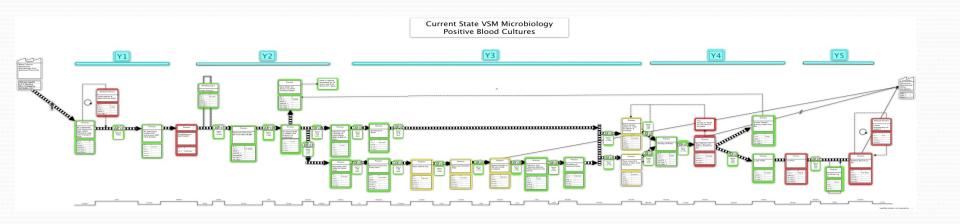

Findings – Blood Culture TAT

- Staffing Variation
 - Processing
 - Technical

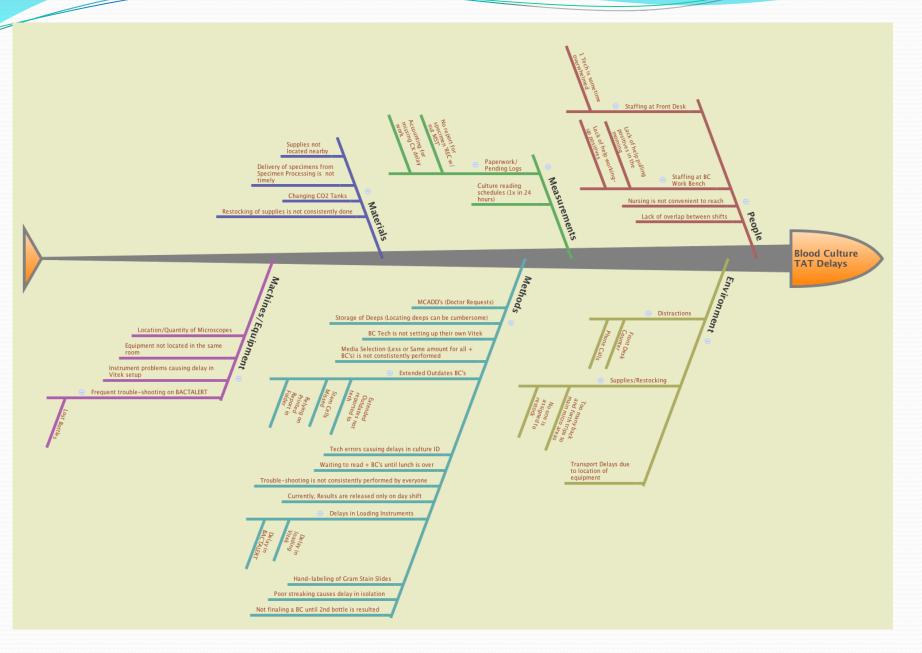

Hourly Staff and Volume Distribution

Micro Receive/Processing




June/July 2011

2011 Data



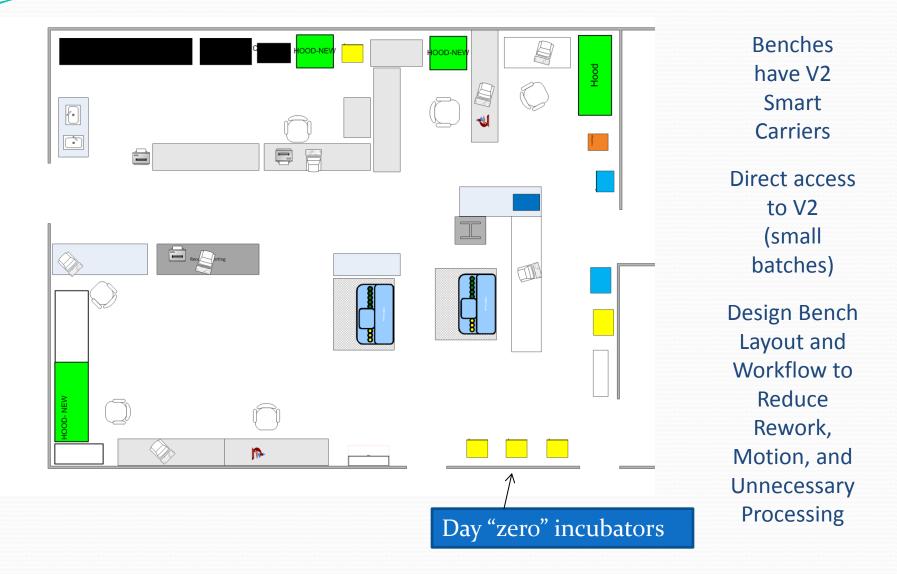
BLOOD CULTURE VALUE STREAM MAP

Significant X: not releasing results from Vitek timely!

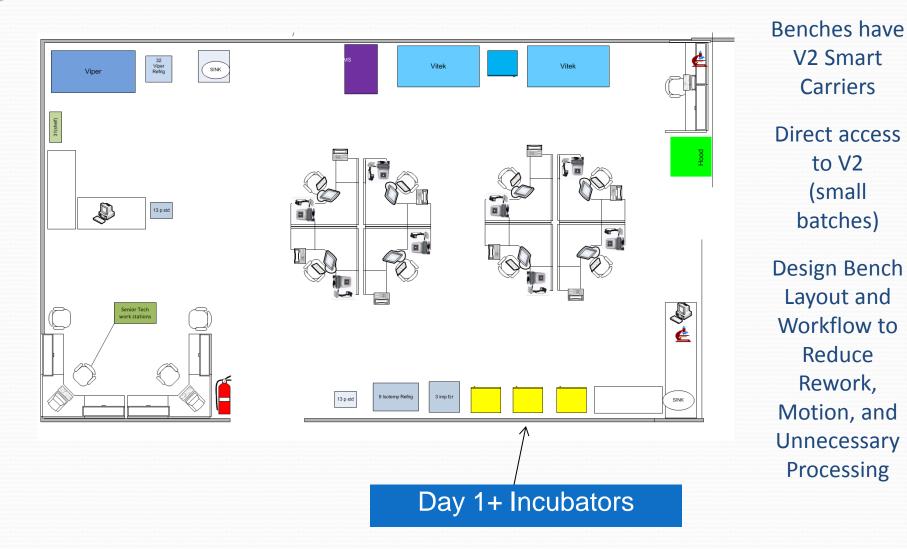
BLOOD CULTURE FISHBONE ANALYSIS

Blood Culture – Current Performance (2013)

BLOOD CULTURE TURN-AROUND-TIME				
June 2010	June 2013	Goal		
36.5% final <80 hours	86.2% final <100 hours	90% final < 100 hours		


QUICK WINS - 2013

Changed GOAL


- <u>Never</u> going to get to 80% in <100 hours, because of the 120 hr incubation for negatives
- Goal made more meaningful
 - 90% reported at 48 hours from *received*/*result*

- Increased frequency of MNG from 1-2x/day to 6 times per day
- Increased frequency of releasing results from Vitek from 1-2x/day to 4 times per day
- Reduced or eliminated paperwork

Micro Setup – Future State

Micro Reading - Future State

Lessons We Learned from our Kaizen Events: Must Do's for Success

- Before the Kaizen event:
 - Pick out an "engaged" team; you want the best & brightest
 - Lay out the "expectations" for the team members
 - If you have metrics, crunch numbers and share with the team
- During the Kaizen event:
 - Make for a comfortable environment
 - Share in the "positivity" with the team and expanded team
- Post Kaizen event:
 - Communicate results to the expanded team
 - Celebrate success! (don't under estimate the importance here)
 - Continue with improvement efforts &
 - Communicate, communicate communicate!!!

Lessons We Learned from our Kaizen Events: Must Don'ts for Success"

- Fail to record metrics or dilute reporting
- Set unrealistically low or high targets
- Pick team members based on seniority or position
- Allow process owner to discontinue sustainability
- Allow "Executive Sponsor" to ignore process change post Kaizen and beyond (leading to zero sustainability)

Benefits to the People

- Physicians/Patients:
 - Faster TAT, physicians can act quicker on results
 - Reduce false positive Urine C&S with boric acid tubes
- Microbiology:
 - Alignment of staff with workload; smooths out the processes and reduces stress
 - Cross-training of all staff on "reading" enhances job satisfaction
 - Reduces errors due to "over work" conditions
 - Creates "teamwork" environment through shared work

Questions?

30 days Plan

	Action	Who	When	Completion
1	Reflex order UA short term improvement	Sany	14-May	100%
2	Create guideline for rack / batch standard size	Team	14-May	100%
3	Wrong plates loadeed on Previ Isola - how to fix it	Angela	14-May	100%
2	Record today's work flow 3 shifts	Angela	15-May	100%
5	Create incoming Urine Cultures profile	Manuel	15-May	100%
E	Create and communicate Std operating procedure	Maryanne	23-May	50%
7		Manuel	14-May	100%
8	Observe specimen waiting receiving and micro specimen receiving	Maryanne	14-May	100%
g	Ask Technologiest why they wait in front of Previ Isola	Manuel	14-May	100%
10	Turning off workcards (automatic print)	Mary Ann	20-May	100%
11	IFSTADIISD NEW COLONY COUNT TEMPLATE	Angela/Maryanne /Anne	15-May	100%
12	Viraning for all shift on changes	Angela / Sandy / Maryanne	31-May	25%
13	Result ()RDR(S batch result entry	Maryanne / Patrick	15-Aug	25%
14	Training Matrix	Maryanne	31-May	100%
15	Metrics to track (TAT & Volumes)	Team	15-May	100%

30 days plan

	Action	Who	When	Completion
16	Look for smaller containers / racks	Team / Mary Ann	15-May	75%
17	Engineer the incubator spaces (Draw)	Mary Ann	16-May	50%
18	Resulting of reflex order			100%
19	Create a visual control for Urine level for Isola	Mary Ann	16-May	100%
20	Update process map	Team	15-May	100%
21	Autoverification Vytek	Mary Ann		25%
22	Purchase acrilic plate holders	Mary Ann	17-May	100%
23	Data collection plan	Manuel	16-May	100%
24	Schedule for following weeks	Team / Sandy	16-May	0%
	Purchase a shelf for the incubator	Mary Ann	16-May	100%
	to read - create a standard	Maryanne	31-May	25%
27	Request a new crystal report that full fill Micro Lab requirements	Mary Ann	15-Jun	0%