Turbo Charging Your Core Lab: When to Automate Work Cells... When to Lean...When to Do Both

Lab Quality Confab ■ New Orleans, LA ■ November 21, 2014

Background

- Steve Stone, Managing Director, Argent Global Services
- Process-Engineering and Management Consulting firm
- Argent pioneered many engineering services for the Diagnostics Industry w/ 20 + years Health Care experience
- Skill Set & Methodology include:
 - Industrial Engineering
 - Lean Enterprise & Six Sigma
 - Data Collection & Information Gathering
 - Facility Design & Layout
 - Management Tools & Software

Turbo Charging Your Core Lab: When to Automate Work Cells... When to Lean...When to Do Both

Core Lab

- Clinical laboratory services
- Core labs are typically high-volume and automated
- Components
 - Central Processing
 - Chemistry / Immunoassays
 - Hematology / Coagulation

Core Lab

- 90 95% of all tests in the clinical lab
- Most tests have short TAT expectations
- Designed to support STAT orders
- Close proximity to central processing
- A Core Lab is key place to start with efficiency and productivity

Closer Than You Think

 When executing a Core Lab, a Lean Work Cell or Total Laboratory Automation are not as far apart as you would think

Closer Than You Think

Feature	Lean Work Cell	TLA
Open Floor Plan		
Core Lab		
Integrated with Front-End		
Continuous Flow		
Reduce Steps (NVA)		
Cross Train Staff		
Standardized Work		
Reduction in Travel		

From the Baseline

- Both concepts will result in improvement / productivity increases over a traditional lab
- Traditional Lab:
 - Departmentalized more barriers
 - Core testing has separate value streams
 - Fewer shared resources
 - Less cross training and communication
 - May or may not utilize central processing
 - Inefficiencies built-in

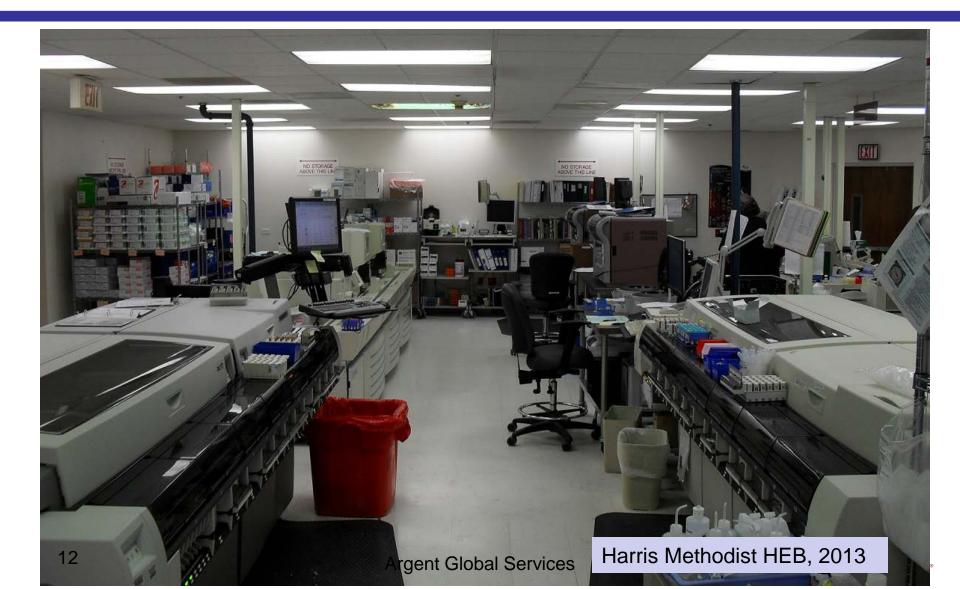
What is Your Baseline

Where are you starting from:

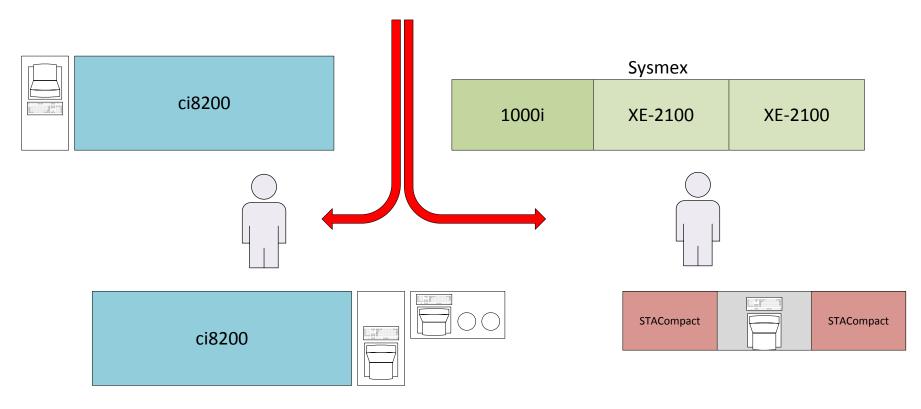
- Understand the entire value-stream
- What are your real needs?
- Define your goals and objectives
 - what is the end-game?
- Determine your level of commitment

Lean Work Cells

- Lean Work Cells were developed from Core Lab concepts
- Lean tools and methodologies have been added to:
 - Ensure standardized work
 - Ensure continuous flow
 - Reduce non-value add steps
 - Address the entire value stream
 - Sustainability and continuity


Lean Work Cells

Benefit / Outcome	Traditional Lab	Lean Work Cell
Improved TAT		
Productivity of Staff		
Utilization of Equipment		
Space Utilization		
Standardized Work / Quality		
Improved Communication		



Lean Work Cell Example

Lean Work Cell Example

Staff Quote

"Set-up is very efficient, standardized with everything together – we don't have a lot of downtime with specimens and that helps keep the TAT low."

"The set-up is the main factor in achieving our goals"

Terry Reeves, MT(ASCP)

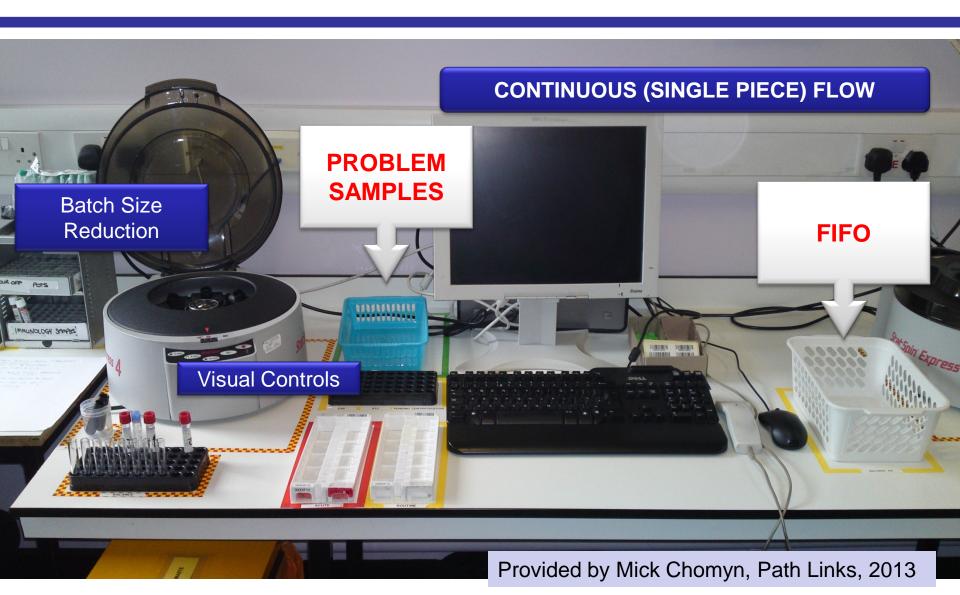
Lead CLS - Core Lab

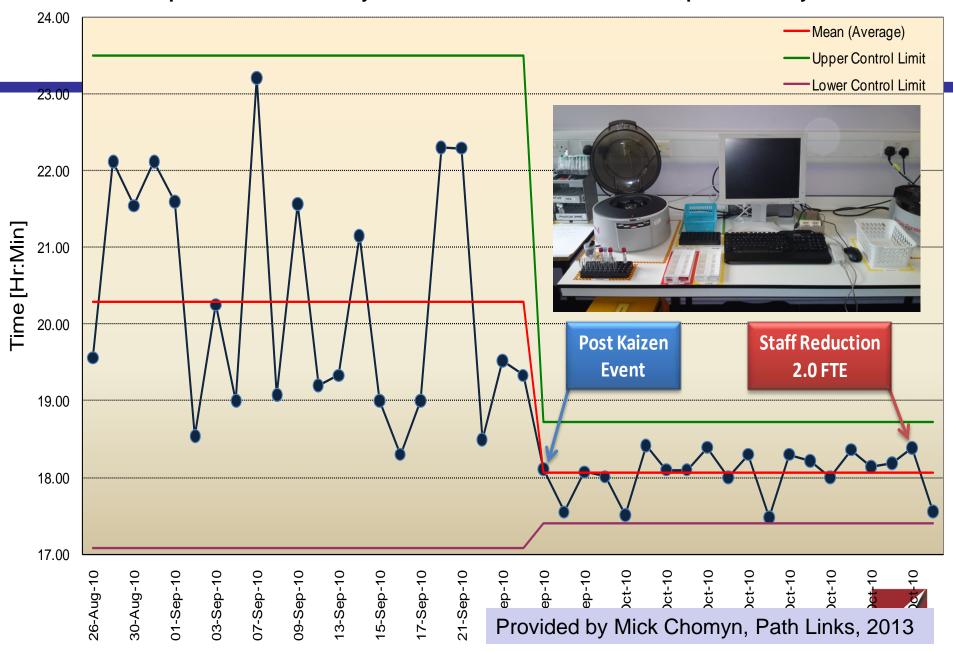
Texas Health Harris Methodist Hospital

Boston Laboratory - Lean Work Cell

Boston Blood Science Laboratory - Mirrored Work Cells

Boston Blood Science Laboratory - Mirrored Work Cells


Boston Blood Science Laboratory - Validation Work Cell

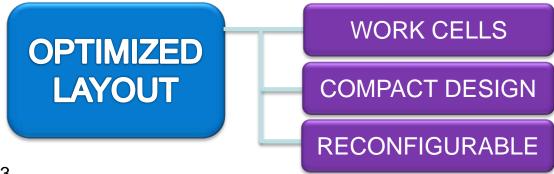

Boston Blood Science Laboratory Plan

Pre-Analytical Work Cell

Impact of Lean Pre-Analytic Work Cell - Time of Last GP Sample Data Entry

Lean Automation

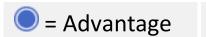
- Automation can facilitate Lean
- The right automation can reduce the need for manual intervention
- Important part of a Lean Work Cell
- The right automation can also reduce the benefits of tracks

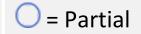


Lean Automation

AUTOMATION IS 'LEAN' IF IT IMPROVES:

AND SUPPORTS:


Total Laboratory Automation


- TLA can bring together some or all of the core lab testing functions
- Connectivity to pre and post-analytical is a key characteristic
- Can produce standardized and consistent results
- Addresses a primary issue in labs labor

TLA Benefits

Benefit / Outcome	Traditional Lab	TLA
Improved TAT		
Productivity of Staff		
Utilization of Equipment		
Space Utilization		
Standardized Work / Quality		
Improved Communication		

Automated Work Cells

- Automated work cells typically link one testing area of the core lab
 - Chemistry/IA connected with pre and post-analytics or Hematology work cells
- May require several solutions to improve all core testing areas
- Some Immunochemistry integrated systems have reduced the importance of these work cells
- We'll talk more about TLA

TLA Set-up

According to a 2011 study published by the American Society for Clinical Pathology (ASCP), 43 percent of clinical laboratories surveyed said it is difficult to find personnel.¹

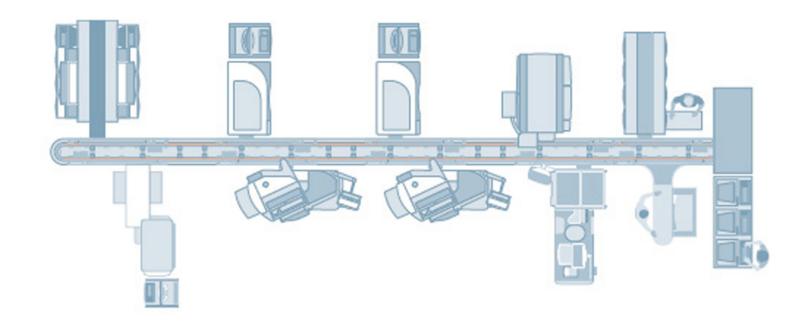
This is nothing new, but labor concerns set-up laboratory automation well

1.http://www.mddionline.com/article/us-healthcare-time-right-laboratory-

205

automation

TLA Example


Here is one of several examples we could look at:

ADVIA Solutions

 High-throughput lab automation with broad menu, single LIS connection, flexible configurations and ability to connect multiple disciplines with same track system: (chemistry, immunoassay, hematology, coagulation, urine)²

TLA Example

TLA

- Many options
- Several companies offer true TLA
- Many others still offer work cells
- Integrated systems can be important
- Pre and post a key part of the package

Assessment: Lean Work Cell

Benefits:

- Can experience excellent TAT
- Improve labor utilization (removes NVA)
- Improves employee satisfaction
- Optimize laboratory space
- Can provide a good return on investment
- Facilitates a culture of continuous improvement
- Flexible and scalable, easy to change
- Procedures can be simple, visual controls and mistake-proofing - standardized work

Assessment: Lean Work Cell

Must Consider:

- Will take a commitment to Lean
- Commitment for implementation and sustaining
- Require buy-in from staff
- Designed to be easy and mistake-proof, but there is still the human factor – staff could deviate from standard work
- In some cases, highly specialized people don't care for standardized work (can be a benefit)

Assessment: TLA

Benefits:

- Brings everything together: pre, post and core analytical (work cell mentality)
- Can reduce training requirements
- Help with staff issues
- Can reduce decision making
- Could be considered a turnkey product
- Consistent output predictable TAT
- Standardization and quality

Assessment: TLA

Must Consider:

- Can be costly, capital commitment
- Space requirements could have large footprint
- Barrier to movement in the lab
- Weaker systems may bottleneck must properly spec – must be robust
- Integrated systems could reduce benefits of track
- Stand-alone pre-analytics may bottleneck
- Scalable, but cost and space may be an issue

Head-to-Head

Benefit	Lean Work Cell	TLA
Flexibility		
Cost		
Space Utilization		
Turnkey & Self-Managed		
Supports Multiple Vendors		
Improves TAT		
Labor Utilization		
Sustainable Performance	0	
Addresses Human Factors		

Final Thoughts

When making decisions for your lab:

- Understand the entire value-stream
- What is your baseline?
- What are your real needs?
- Define your goals and objectives
 - what is the end-game?
- Determine your level of commitment
 - e.g. if Lean is right for you are you ready to see it through to the end

Training Thoughts

Remember...

"Learning is not compulsory, neither is survival"

- W. Edwards Deming

End of presentation

Turbo Charging Your Core Lab: When to Automate Work Cells... When to Lean...When to Do Both

Copyright 2013
Argent Global Services Lean Training Services
Argent Global Services

