LEAN for Lab Leaders

Lab Quality Confab 2013

Topics

Introduction

- Setting the Stage Six Sigma vs. LEAN
- Laying the Foundation Basic LEAN Concepts
- From Concept to Execution Identifying Improvement Opportunities
- How to make it Happen Implementation Tools
- Long-term Success Process Sustainability

Introduction – Katja Lehmann

Icebreaker - Interview

• Divide into pairs

- Take five minutes to interview each other
- Each interviewer has to find 3 interesting facts about their interview partner (2 related to work/job and 1 personal)
- Present the most interesting fact about your interview partner to the rest of the group

Expectations for this workshop

Ground Rules

Silence your cell phones □ No PC's Take restroom breaks as needed Participate, Participate, Participate!

Setting the Stage

Six Sigma vs. LEAN

Six Sigma

6σ

- Improve the quality process outputs
- Error reduction
- Variation reduction

Six Sigma

Six Sigma

6σ

Bill Smith 1986

 Demings Plan – Do-Check-Act Cycle

• What is Six Sigma? Pete Pande / Larry Holp, 2001

- Create "more" value with less work
- Eliminate non-value adding process steps
- People Process Equipment
- Continuous improvement

why? why? why? why?

LEAN

- Toyota ProductionSystem (TPS)
- Influence by Deming and Henry Ford

ΤΟΥΟΤΑ

• Lean Hospitals, Mark Graban, 2008

Lean Six Sigma

- Speed of Lean Kaizen
- Quality of Six Sigma
- What is Lean Six Sigma Michael George et al., 2003

Laying the Foundation

Basic LEAN Concepts

Basic LEAN Concepts

Continuous Flow

Takt / Cycle / Lead Time

Standard Work

Process Waste

BD

Continuous Workflow

Continuous Workflow

The progressive movement of products through the value stream without stoppage, scrap or backflow

Strive for Single Piece Flow vs Batch Processing

Eliminate Inventory (work in progress) Eliminate Rework

Processing in Large Batches

Small Batch Processing

Small Batch Processing

- Decreased lead time
- Less human errors due to reduced stress
- Reduction of staff needed

Standard Work

Standard Work Definition

- Each step in the process should be defined and must be performed repeatedly in the same manner.
- Standard Work will define the most efficient methods to produce product using available equipment, people, and material.
 - Standard Work depicts the key process points, operator procedures, production sequence, safety issues, and quality checks.

Standard Work Benefits

- Basis for improvements exposes problems
- Establishes routine / habit for work to be done
- Reduces maintenance and system down time
- Make scheduling resources easier

Takt Time / Cycle Time / Turn Around Time

Takt Time

Cycle Time

Turn Around Time

- Frequency to Produce a Quality Slide
- Customer Demand = Daily Workload
- TT = <u>Available Time per Day</u> Customer Demand per Day

- CT = Total Time required to complete the process
- HOT (Hands On Time)
- WAT (Walk Away Time)
- CT = HOT + WAT

Cycle Time vs Takt Time

Cycle Time = What we can do

Takt Time = What we need to do

Turn Around Time (TAT)

- Total Process Time including Wait Time
- TAT = Cycle Time + Wait Time

TT / CT / TAT – Benefits

- Base line for improvements
- Identify customer demand (TT)
- Focus what / where to improve
- Measure the impact of process improvements

Process Waste

Value Added vs Non-Value Added activities

Exercise – Somebodies Garage

INVOICE

COMEDODIEC

Invoice No:	
Date:	

Address[.]

SOMEBODIES GARAGE

Product Item	Description	Time spend (min)	Amount
1	Receiving Customers Car and Keys	10	8\$
2	Moving Car into the Repair shop	5	4\$
3	Car Inspection	30	25\$
4	Looking for Spare Parts	15	12.5\$
5	Lunch break	30	25\$
6	Rush -Ordering missing spare parts	15	12.5\$
7	Calling the customer with a repair	5	4\$
	estimate		
8	Waiting for customer to call back	20	17\$
9	Starting Repair	30	25\$
10	Receiving Rush Order	10	8\$
11	Spare Parts	0	350\$
12	Finishing Repair	45	37.5\$
13	Generating Bill	15	12.5\$
14	Car Wash	10	8\$
15	Driving Car to Pick-up lot	5	4\$
16	Calling customer for pick up	10	8\$
17	Explaining Bill to customer	15	12.5\$
	TOTAL	270min	573.50\$

Date:

LEAN Process Waste

Waiting

Overproduction

Rework/Defects

Motion

Inventory

Processing

- Smoother Less Disruptive Process Flow
- Saving Time, Energy and Money

From Concept to Execution

Identifying Improvement Opportunities

LEAN Toolbox

Spaghetti Mapping

LEAN Toolbox

Change

Kaizen Events - Overview

- Kaizen Events can touch every part of an organization
- 3 5 day event
- Executed by a team
- Sponsored executive champion
- Facilitated by a LEAN expert

Kaizen Events - Elements

- Training
- Defining the problem/goals
- Documenting the current state
- Brainstorming and developing a future state
- Implementation
- Developing a follow-up plan
- Presenting results
- Celebrating successes

Kaizen Events - Types

- 改善
 - Change G

- Value Stream Maps
- Variation Reduction
- Inventory Management Kanban
- 5S
- Value Selling

Value Stream Mapping - Overview

- Analytical not a statistical tool
- 20.000ft view of a process
- Documents the entire process and information flow on one page
- "Snapshot in time" data reflects the day the activities are measured
- Does not improve the process but point out areas to improve

Value Stream Map - Explanation

Value Stream Mapping vs. Process Mapping

Value Stream Map

Process Map

50.000ft view of a process Detailed view of a process

Process Mapping - example

- Process map can flow horizontally or vertically
- Use color coding to distinguish between department or instrumentation

Process Mapping 101

- Start with the input that initiates the process
- Ask the question, "What happens next?"
- Record each step in post-it note boxes flowing leftto-right, or top-to-bottom.
- Insert arrows to show the direction or flow of the process.
- When the flow can go in two directions, turn the post-it to a diamond for a yes/no question and put in two arrows to show the two directions.

Process Map - Analysis

- Which process steps are value added, which are non-value added?
- Is the process broken?
- How much Operator Cycle Time and Machine Cycle Time is spent executing the process ?
- How many hand-offs are in the process flow they pose potiential room for errors

Spaghetti Mapping - Overview

- Depicts the specimen flow throughout the laboratory / facility
- Helps analyzing if the laboratory layout is set up according to the process flow

How do create a Spaghetti Map

- 1. Follow the specimen through the laboratory according to your process flow
- 2. Mark the movement with numbers on your layout
- 3. Connect the numbers with lines

Spaghetti Mapping - Analysis

- Does the laboratory layout follow the process flow ?
- Are all consumables stored at Point of Use?
- Does the laboratory have to be re-designed for new equipment?

Route Cause and Countermeasure

Brainstorming

<u>SMART Goals</u>

- S = Specific
- M = Measurable
- A = Achievable
- R = Relevant
- T = Time-Bound

How to make it Happen

Implementation Tools

Implementation Tools

Change Management

5S

Action Plan

Visual Management

3 Stages of Change

Unfreeze Change Refreeze

3 Stages of Change – Unfreeze

- Determine what needs to change
- Ensure there is strong support from upper management
- Create the need for change
- Manage and understand the doubts and concerns

3 Stages of Change – Change

- Change model
- How people respond to change
- Communicate often
- Dispel rumors
- Empower action
- Involve people in the process

3 Stages of Change – Refreeze

- Anchor the changes into the culture
- Develop ways to sustain the change
- Provide support and training
- Celebrate success!

Action Plans - Elements

W.....
H.....
W.....
W.....
S.....

😂 BD

Action Plans - Examples

Excel Format

Gant Chart

MS Project

ID	Task Name	Start	Finish	Duration	% Complete	Jun 2010				Jul 2010					Aug 2010				Sep 2010
						6/6	5 6/13	6/20	6/2	7	7/4	7/11	7/18	7/25	8/1	8/8	8/15	8/22	8/29
1	Sign Bond maX Reagent Rental Agreement	6/10/2010	6/10/2010	1d	100%														
2	Initial Meeting to review lab layout and time-line	6/10/2010	6/10/2010	1d	100%														
3	Upgrade LIS – Add AP Module	6/10/2010	6/20/2010	11d	0%														
4	Search and hire Histology Supervisor and staff	6/10/2010	6/23/2010	14d	0%														
5	PO to Bartels and Stout and lead time to delivery	6/10/2010	7/24/2010	45d	0%									I					
6	Write laboratory procedures - 3rd Party	6/14/2010	7/13/2010	30d	0%														
7	On-Site visit to establish workflow and SOP's	6/24/2010	6/24/2010	1d	0%														
8	Construction of new lab	6/25/2010	7/24/2010	30d	0%														
9	Order lab furniture and fixtures – lead time	6/25/2010	7/24/2010	30d	0%									I					
10	Order remainder of lab equipment with lead time	7/11/2010	7/24/2010	14d	0%									I					
11	Order Supplies with lead time	7/16/2010	7/24/2010	9d	0%														
12	Install furniture and equipment in new lab	7/24/2010	7/28/2010	5d	0%														
13	Program and test LIS	7/15/2010	7/28/2010	14d	0%														
14	Set IHC menu	7/6/2010	7/19/2010	14d	0%														
15	Order Bond reagents	7/20/2010	7/28/2010	9d	0%														
16	Train on Bond maX	7/29/2010	7/31/2010	3d	0%														
17	Perform validation studies on IHC menu	7/29/2010	8/11/2010	14d	0%														
18	Train on balance of histology equipment	7/29/2010	8/4/2010	7d	0%														
19	Establish and test CAP required reporting (Bond)	8/4/2010	8/4/2010	1d	0%														
20	Dry runs – request through delivery of slides	8/5/2010	8/9/2010	5d	0%														
21	Internal inspection to CAP guidelines	8/9/2010	8/9/2010	1d	0%														
22	Go-Live	8/12/2010	8/12/2010	1d	0%														

What is 5S ?

The 5S System

- First step in continual process improvement
- Basic principles of process improvement
- Begins to eliminate waste
- Optimises the workplace
- Is not just about teaching people to be tidy
- Gives people control over their processes
- REDUCES STRESS!

5S Benefits

- Improved safety
- Improved quality
- Reduced equipment down time
- Eliminate search time

Visual Management

Visual Management allows us to know what is happening when walking into a situation.

Visual Management

- Makes anomalies visible
- Error proofs process
- Improves communication
- Can be used to manage key metrics

Visual Management – Error Proof

- Make it easy to do it right
 - Checklists
 - Effective data collection formats
 - Workflow with fewer hand-offs
 - Symbols

Visual Management Benefits

- Problems can be solved immediately
- Improve distribution of work
- Improved communication in the laboratory
- Key metrics being managed daily

Longterm Success Process Sustainability

Process Sustainability

- Implement key performance indicators
- Monitor / audit process performance
- Continually improve the process

Leading vs Lagging Indicators

- Lagging Indicators
 - Measure the output of a high level process
 - Measured in larger intervals (monthly)
- Leading Indicators
 - Measure the output of a deeper level process or a single process step
 - Measured in short frequent intervals (daily, weekly)
 - Help to immediately Root Cause and Countermeasure to influence the Lagging Indicators

Process Audit

How?

- Pick the audit methodology
 - Re-observation
 - Interviews
 - Questionnaires

When?

What is the right frequency

Who?

• Who is in charge of the audit

Summary

Topics Covered

Introduction

- Setting the Stage Six Sigma vs. LEAN
- Laying the Foundation Basic LEAN Concepts
- From Concept to Execution Identifying Improvement Opportunities
- How to make it Happen Implementation Tools
- Long-term Success Process Sustainability

Expectations for this workshop met?

Questions?

