Adding Industrial Engineering to the Lean/Six Sigma Mix: Lessons from More Than Five Years of Continuous Improvement at ARUP Laboratories

David Layton Supervisor, Improvement Engineering ARUP Laboratories

October 22, 2014

• Consider applying industrial engineers in the laboratory.

• Discuss how typical industrial engineering curriculum can be applied to your laboratory.

• Observe real laboratory examples of how industrial engineering principles are creatively applied in context in the laboratory.

Challenges

Employees:	3,000+
Specimens:	30,000–50,000/day
Test Menu:	3,000+ tests and test combinations
Organization:	7 Divisions, 50 labs
ARUP Managed Hospital Labs:	University of Utah and Huntsman Cancer Hospital
Clients:	University hospitals, children's hospitals, multi-hospital groups, major commercial laboratories, group purchasing organizations, military and government facilities

Continuous Improvement History

- A solid background in continuous improvement embraced since inception (1984)
- Provided governance in the early 1990s with a continuous improvement board
- Strives for an integrated environment with an emphasis on standardization and flexibility
- Efforts made to:
 - Physically configure labs to facilitate the flow of specimens
 - Use our workforce as efficiently as possible
 - Ensure our processes maximize efficiency

Continuous Improvement History

- Found merit in LEAN philosophies with specific projects
- Used industry consultants, including industrial engineers, and regularly found a lack of laboratory context
- In mid-2000s decided to bring in industrial engineers as full-time employees
- Industrial engineers have come to understand the laboratory and are able to apply LEAN in context

Some asked:

- What do industrial engineers or manufacturing engineers know about laboratories?
- Laboratories are not manufacturing or industrial plants.
- We do not make a widget.
- How will the expertise or training of an industrial or manufacturing engineer apply to my laboratory?

Typical Engineering Curriculum

Industrial Engineering

- Statistics
- Manufacturing Design & Processes
- Manufacturing Systems
- Industrial Engineering Design
- Simulation
- Production Planning and Control
- Cost Analysis
- Materials Handling
- Automated Manufacturing

Manufacturing Engineering

- Quality Systems
- Process & Systems Design
- Manufacturing Systems
- Design for Manufacturing
- Manufacturing Simulation
- Project Management
- Engineering Economics
- Information Systems
- Automation

Typical Engineering Curriculum

Industrial Engineering Manufacturing Engineering **Statistics Quality Systems** ۰ Manufacturing Design & Processes Process & Systems Design Manufacturing Systems Manufacturing Systems • Industrial Engineering Design Design for Manufacturing ٠ Simulation Manufacturing Simulation • Production Planning and Control **Project Management Engineering Economics Cost Analysis** ٠ ٠ Materials Handling Information Systems • **Automation** Automated Manufacturing

Process Design House of LEAN

"LEAN does not simply work by employing one or even a couple elements of the LEAN philosophy."

—J. Oliver, Ball State University

"The key to making the transition to a LEAN organization is the fundamental change in the corporate culture that must be made."

—Infor Healthcare Essentials

Roadblocks to LEAN Laboratories

• Laboratories are different than other industries.

• LEAN cannot be applied to the laboratory out of context.

• Quality must be a priority over efficiency in the laboratory.

"Sadly, we've watched other firms set off full of vision, energy, and high hopes, but make very little progress because they went tearing off after perfection in a thousand directions. Select the two or three most important steps...defer the other steps until later...doing one thing at a time...until completion...."

-Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Womack and Jones • Seven division managers and 25 group managers have the responsibility to continuously improve their laboratories.

 Meet with division managers and group managers quarterly to consider how improvement engineering is or can better assist them in their areas of responsibility.

Engineering Utilization

Resource Utilization

Types of Offerings

- Space •
- Waste elimination •
- Facilitation •
- Statistical analysis •
- Small tool engineering •
- Training •
- Quality •
- **Documentation**
- Other •

AR PLABORATORIES

Utilization by Resource

Manufacturing Design & Processes

Waste-Elimination Events

Waste-Elimination Opportunities

Trouble Bubbles

Waste Elimination: Kaizen

Waste Elimination: Kaizen Priorities

Kaizen Priorities with Assignments

MALDI process review 8/13/13									
Issue Identified	Improvement Ideas	Comments	Priority	Assignment					
	evaluate trav labeling	look for improvement							
Minda Francisco d		opportunities	1	Robert					
ivisaelivered specimens	Add to specimen process job aid		1	Robert and Susan					
	Education of Techs		1	Robert					
		use visuals and labels;							
	5S Tools evaluation	potential to reorganize lab		Dave Layton and					
Disorganized supplies		space	1	Diana Hall					
Discussional based	Same as "disorganized supplies"			Dave Layton and					
Disorganized nood		Robert to investigate small	1	Diana Hali					
	Light and magnifications	lighted magnifier; future new		Dave Layton and					
Poor Visibility in the hood		hood	1	Diana Hall					
Awkward sharps container in the	New size sharps container	eliminate large container that		Dave Layton and					
hood		hastobetipped	1	Diana Hall					
Supplies not stored nearby	keep tips, toothpicks in the hood		1	Diana Hall					
		Dave Layton and Dian a Hare in							
Distracting Noise from adjoining		process. Additional							
lab	Add in additional barrier	measurement of before and							
		after barrier needs to be		Dave Layton and					
	l de etilisse dete is	conducted.	1	Diana Hall					
Duplicate Data	required/needed	create one process	1	Robert					
		Identify appropriate volume,							
Matrix reagent not on a schedule	Make it every Monday	make scheduled assignment,							
		also applies to BTS	1	Robert					
		Susan to collect feedback from							
		the techs to determine							
No Tech available for validation	Eliminate 2nd OC review	and use the information?	1	Susan					
	Define availability for validation	being fully staff will help this							
	process/ schedule for verification	issue	2	Robert					
	Study and define ideal run size	minimum and maximum,	2	Robert					
Run Size too big	Define ideal run times/days of week	days of week and run start							
		times, gather data for MC ORG	2	Robert and Dave					
Non-Standard sort	sort	meeting: train to best practice		Layton					
Tray map inefficient - manual	Software upgrade solution (in	Identify best practice and train		Robert and Joe					
process	process)	staff	2	Wiggins					
		May also be improved by							
		software upgrade, could be		Robert and Joe					
Non Standard spot target process		improved by monitor on an		Wiggins					
		wireless barcode s can ne r	2						
The much server in the serve		eliminate paper and		Robert and Joe					
roo much paper in the process	move to new software	handwriting process	2	Wiggins					
				Robert and Joe					
	Software interface		2	Wiggins					
Elipipate Manual Data Entry	Log QC in fo in EpiCenter	Copy Mycology process	2	Robert and Anita N.					
		needs to include the score of							
Undefined repeat criterion	Identify Criteria	what to result or send to							
		sequencing, requires gathering		Pahart					
Conjected and inefficient space		uata and put in writing (SOP)	2	Dave Layton and					
design	5S review (lean)		2	Diana Hall					
		only6 per day can be entered;							
		can we transfer the							
Lack of Validation support	Real time updates to database	responsibilitiy of MSP							
		generation to R&D for a		Robert, Managers and MDs					
		apacenter streamment process		and wos					

Note that two of the high priority tasks included 5S and Visual Tools.

Waste Reduced

Manufacturing Design & Processes

Space Design

Facilities Organization Umbrella

- Skilled with 2D CAD space layouts
- Industrial engineers able to manipulate the facilities drawings
- Design with efficiencies in mind
- Hand off to construction manager
- Member of corporate space committee

Current Layout with Traffic Flow

Typical lab reconfiguration

New

Layout with Traffic Flow

Traffic in lab reduced by 29%

Current Layout with Traffic Flow

CURRENT

New Layout with Traffic Flow

Space vs. Waste Elimination

OTHER 0% ENG 10% SPACE 36% VSM 27% **STATS** QLTY FAC TRAIN 10% 0% 15% 2% DOC 0%

Turn **space projects** into **waste elimination projects.**

Utilization by Resource

AR PLABORATORIES

Manufacturing Design & Processes

20–30 Count Batch Size

Sweet Spot /

Current Batched Flow

Specimens tested and reported up to a full day earlier. Waiting "open" time reduced by 85%. Capacity increased by 82%.

Reduced Batch Size & Load Leveling

	Tim	1e																																	
Sample	6/1/10 1:00 PM	6/1/10 2:00 PM	6/1/10 3:00 PM	6/1/10 4:00 PM	6/1/10 5:00 PM	6/1/10 6:00 PM	6/1/10 7:00 PM	6/1/10 8:00 PM	6/1/10 9:00 PM	6/1/10 10:00 PM	6/1/10 11:00 PM	6/2/10 12:00 AM	6/2/10 1:00 AM	6/2/10 2:00 AM	6/2/10 3:00 AM	6/2/10 4:00 AM	6/2/10 5:00 AM	6/2/10 6:00 AM	6/2/10 7:00 AM	6/2/10 8:00 AM	6/2/10 9:00 AM	6/2/10 10:00 AM	6/2/10 11:00 AM	6/2/10 12:00 PM	6/2/10 1:00 PM	6/2/10 2:00 PM	6/2/10 3:00 PM	6/2/10 4:00 PM	6/2/10 5:00 PM	6/2/10 6:00 PM	6/3/2010	6/4/2010	6/5/2010	6/6/2010	6/7/2010
1	1																																	\$	
2	2																																	\$	
3	3																																	\$	
4	1																																	\$	
1	5																																		\$
(3																																		\$
7	7																																		\$
8	3																																		\$
ç	9																																		\$
Typical Engineering Curriculum

Industrial Engineering

- Statistics
- Manufacturing Design & Processes
- Manufacturing Systems
- Industrial Engineering Design
- Simulation
- Production Planning and Control
- Cost Analysis
- Materials Handling
- Automated Manufacturing

Manufacturing Engineering

- Quality Systems
- Process & Systems Design
- Manufacturing Systems
- Design for Manufacturing
- Manufacturing Simulation
- Project Management
- Engineering Economics
- Information Systems
- Automation

Industrial Design

Kaizen Bursts

Solid Modeling of Sliding Bins

Linear Bin Engineered Solution

Typical Engineering Curriculum

Industrial Engineering	Manufacturing Engineering
Statistics	Quality Systems
 Manufacturing Design & Processes 	 Process & Systems Design
 Manufacturing Systems 	 Manufacturing Systems
 Industrial Engineering Design 	 Design for Manufacturing
Simulation	 Manufacturing Simulation
 Production Planning and Control 	 Project Management
Cost Analysis	Engineering Economics
Materials Handling	 Information Systems
Automated Manufacturing	Automation

ARP^{*}LABORATORIES NATIONAL REFERENCE LABORATORY

NATIONAL REFERENCE LABORATORY

Typical Engineering Curriculum

Industrial Engineering

- Statistics
- Manufacturing Design & Processes
- Manufacturing Systems
- Industrial Engineering Design
- Simulation
 - Production Planning and Control
 - Cost Analysis
- Materials Handling
- Automated Manufacturing

Manufacturing Engineering

- Quality Systems
- Process & Systems Design
- Manufacturing Systems
- Design for Manufacturing
- Manufacturing Simulation
- Project Management
- Engineering Economics
- Information Systems
- Automation

IMPROVEMENT ENGINEERING LAB IMPROVEMENT PROCESS

IMPROVEMENT ENGINEERING LAB IMPROVEMENT PROCESS

Typical Engineering Curriculum

Industrial Engineering

- Statistics
- Manufacturing Design & Processes
- Manufacturing Systems
- Industrial Engineering Design
- Simulation
- Production Planning and Control
- Cost Analysis
- Materials Handling
- Automated Manufacturing

Manufacturing Engineering

- Quality Systems
- Process & Systems Design
- Manufacturing Systems
- Design for Manufacturing
- Manufacturing Simulation
- Project Management
- Engineering Economics
- Information Systems
- Automation

Current Specimen Routing Automation

Current Specimen Routing Automation

- Switch yard maintenance and downtime
- Large maintenance contracts

AR PLABORATORIES

 Routing software through vendor

Current Specimen Routing Automation

- Track vendor supplied sorters
- Acquire spare parts through old customers and hoarding

New

Specimen Routing Automation

 Experienced industrial engineers provided confidence with the in-house automation initiative.

New

Specimen Routing Automation

- Industrial engineers designed the new track configuration and the new robotic specimen handling systems.
- New track programmed by in-house talent.

AR PLABORATORIES

Specimen Sorters

Specimen Sorters

Specimen Sorters

Specimen Binders

Specimen Binders

Optical Character Recognition (OCR)

Optical Character Recognition

ARP^{*}LABORATORIES NATIONAL REFERENCE LABORATORY

Storage Sorters

Decapper Cappers

Other Automation

- **Focus on:** Pre-analytic processes:
 - Pick and place binders
 - Sorters
 - Storage sorters
 - Decappers
 - Optical character recognition (OCR)
 - Post-analytic processes:
 - Storage sorters
 - Cappers
 - Tool design

Tool-Design Projects

Conclusion

- Industrial engineers apply their educational curriculum in the lab while implementing the tools of LEAN.
- Reporting is under facilities organizational umbrella.
- Engineers will thrive and have an impact in the lab environment as they are able to implement engineering technologies.
- Lab can benefit from short and long-term wins.
- The industrial engineer who understands the laboratory can effectively apply LEAN/Six Sigma and engineering principles in context.

Conclusion

"We have developed an effective strategy for applying industrial engineering or manufacturing engineering concepts in the laboratory; while our process includes some typical applications, it also includes many atypical applications of industrial engineering principles used in our laboratory."

—ARUP executive

Open Discussion

