

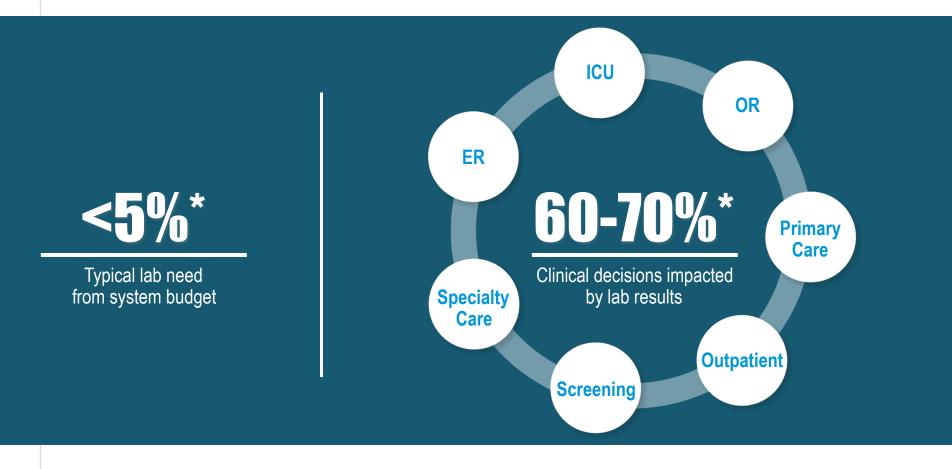
Going the Extra Mile with Value Stream Mapping: New Ways to Find More Hidden Costs in Your Lab

Value Stream Mapping

Put science on your side.

ADD-00002298

June 2005 – Present


- ASQ Six Sigma Black Belt
- Lean Six Sigma Blackbelt
- Workflow Consultant
 Project Management
- **2002 2005**
 - Supervisor Specimen Processing
- 1993 2005
- Core Laboratory Supervisor
- **1989 2002**
- Supervisor Special Chemistry
- Supervisor Infectious Testing
- 1977 1989
 - MT, Special Chemistry, Infectious Chemistry

Testing,

Diagnostics Has System-Wide Impact

Diagnostics influence critical outcomes in nearly every department and facility.

*Forsman, Rodney W. "Why is the laboratory an afterthought for managed care organizations?" Clinical Chemistry. 42(5), 1996. 813-816.

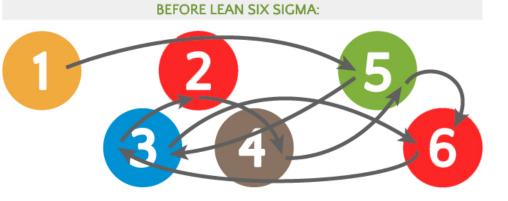
See Also:

DOI: 10.1309/LM4O4L0HHUTWWUDD

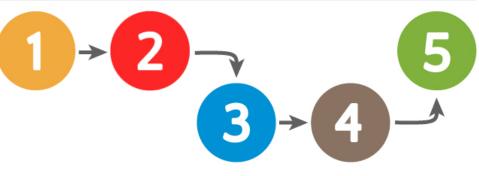
- Clinical Laboratory Tests: Which, Why, and What Do The Results Mean? Frank H. Wians, Jr., PhD, MT(ASCP), DABCC, FACB
- (Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX)

Put science on your side. ADD-00002298

http://labmed.ascpjournals.org/content/40/2/105.full.pdf+html



What is LEAN?


Lean Six Sigma is a proven method of improving business efficiency and effectiveness

Lean is simply

- A method of streamlining a process, resulting in
 - Increased revenue
 - Reduced costs
 - Higher quality
 - Reduced Turn Around Time
 - Improved customer satisfaction
- The removal of "waste", which is an activity no required to complete a process

AFTER LEAN SIX SIGMA:

LEAN: Types of waste Looking at "W.O.R.M. P.I.I.T." waste

WAITING

Wasted time waiting for the next step in the process

OVERPRODUCTION

Production that is more than needed or before it is needed

REWORK

Efforts caused by defects, scrap, and incorrect information

MOTION

Unnecessary movements by people (e.g. walking)

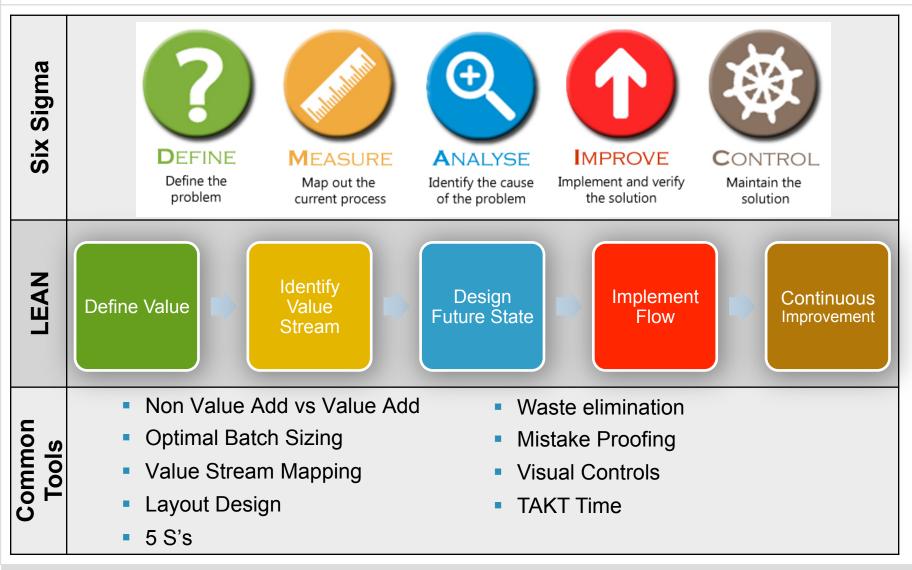
EXTRA PROCESSING

More work or higher quality than is required by the customer

INVENTORY

Excess products and materials not being processed

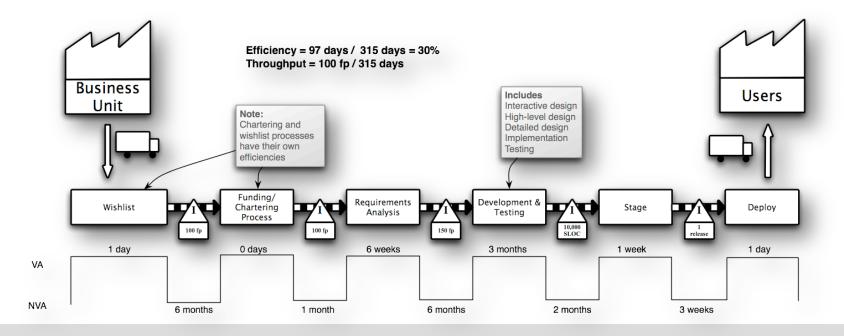
INTELLECT Underutilizing people's talents skills, & knowledge


TRANSPORT

Unnecessary movements of products & materials.

LEAN: DMAIC

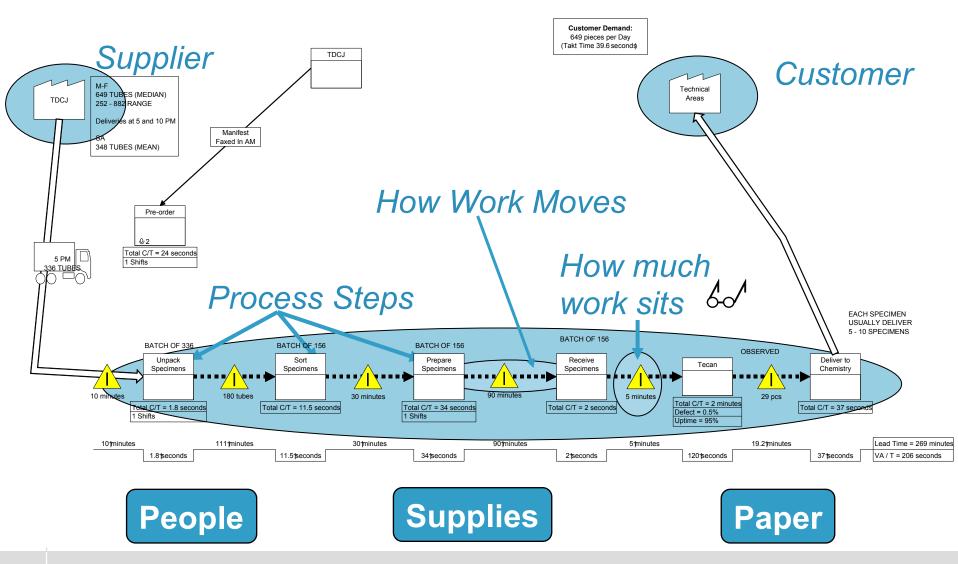
LEAN and Six-Sigma Processes work together with common tools to be LEAN Six-sigma



LEAN: Using Data to Improve Flow

Value maps allow data to be represented visually to better identify waste/processes

- Build Process and Value Stream Maps
 - Understand how the process runs.
 - Know where the process has stoppages and rework.
- Remove waste from the process.
- Create a Visual Workplace.



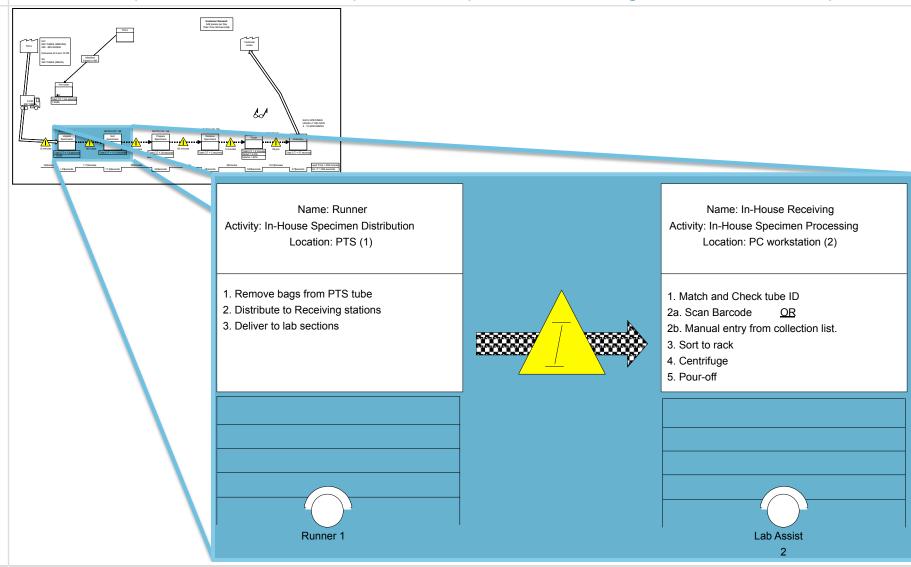
Example Value Stream Map

The map below outlines a typical lab value stream map

LEAN: Go to the GEMBA

Gemba Kaizen is similar to "MBWA" - Management by Walking Around

- Gemba (現場)
 - in Japanese means "the actual place" or "the real place"
 - In business, Gemba refers to the place where value is created and the general notion is that the best improvement ideas will come simply from going to the Gemba ('bottom-up' vs. 'top-down')



LEAN: Go to the GEMBA

As an example, we can look at the process of specimen receiving within the value map

LEAN: Understanding the data behind the map

Time maps between steps can quickly identify areas of waste in large and small scale

Workstation Details	1. Runner	1. In-House Receiving	1. Secretary		
Lab Location	Specimen Management (SM)	Specimen Management (SM)	Specimen Management (SM)		
Room Location	ED / in-house PTS	Right of ED / in-house PTS	Mail-outs		
Day shift staff	1	2	1		
Evening shift staff	1	2			
Night shift staff		2			
# Workstations	1	2 - 1 Stat, 1 Routine	1		
Equipment		LIS, Two 172 spot centrifuge; Two microtainer centrifuges: shared w send-outs	Phone, LIS		
Work Elements					
1	Manages PTS	Empty Bag	Manage Add-ons		
2	Distributes to receiving stations	Match and check tube label w collection sticker	Answer phone		
3	Delivers received samples to lab sections	Scan if hand held	Answer window		
4	Load/Unload centrifuges	Manually enter if not hand held			
5	Maintains centrifuges	sort to rack			
6	AP mail	centrifuge 5 minutes			
7	retrieves dry ice	Pour-off Aliquots			
8	organizes storage room	Deliver			

LEAN: Understanding the data behind the map

Time maps between steps can quickly identify areas of waste in large and small scale

Activity	Sum of	Average of Cycle Time	Value			Was	te -	hh:m	m:ss				
Activity	Tubes	lubes	hh:mm:ss	Added	Waiting	Over- Productior	Re-Work Errors	Motion	Extra- Processing	Inventory	Intellect	Transport	
Arrives PTS													
Window Drop												Waste	
Receive Complete													
Put Labels on Sheet												Total	
Place in Centrifuge												h:m:s	
Start Centrifuge													
Retrieve from centrifuge													
In-House Delivery to Lab													
Prepare add-on													
Microbiology Delivery													
Each tube experiences proce	ess time of:												

Cycle Time	Tubes	Avg per Tube hh:mm:ss	Total Labor
Labor Time:			
Centrifuge Time:			
Transport Time:			
Additional Activities:			

LEAN: Spaghetti Diagrams

Spaghetti Diagrams allow Six Sigma specialists to identify sub-optimal movements

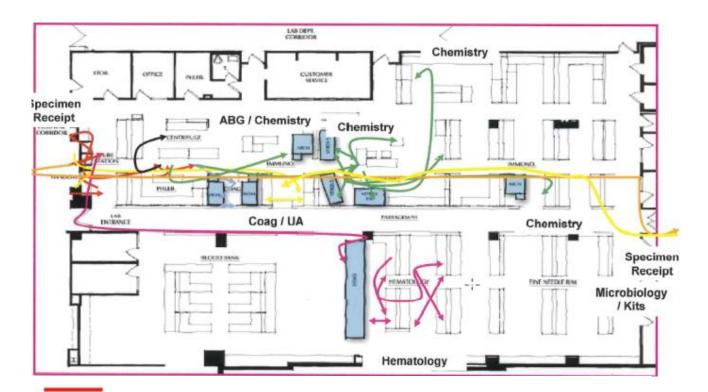


FIGURE: This is an example of a spaghetti diagram. The diagram got its name because of how it resembles a pile of tangled noodles. It shows a movement path in a room and also is used as a waste observation tool.

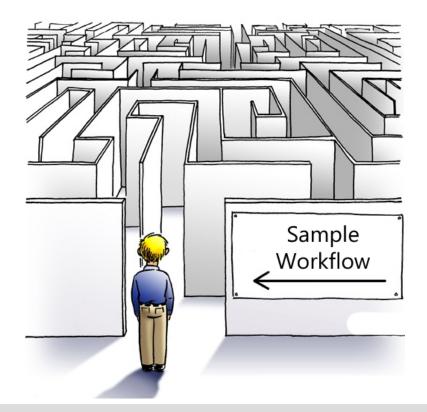
LEAN: How Physical Layouts Affect Efficiency

Inefficient layouts can lead to real efficiency drops which equates to increased cost

Distance between process steps

- Length of transport adds time and encourages batching / holding
- Non-linear flow may cause backtracking
- Long distances can create additional process steps

Excess drop-off points

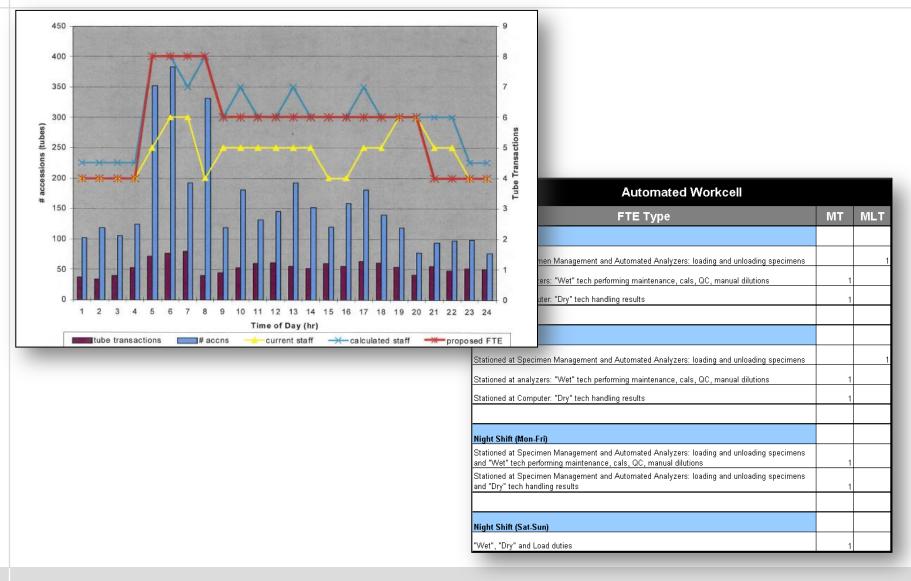

 Chemistry, hematology, coagulation, etc. located far apart

Necessary resources located far away

- Instrument printers & resulting computers
- Analyzers & reagents

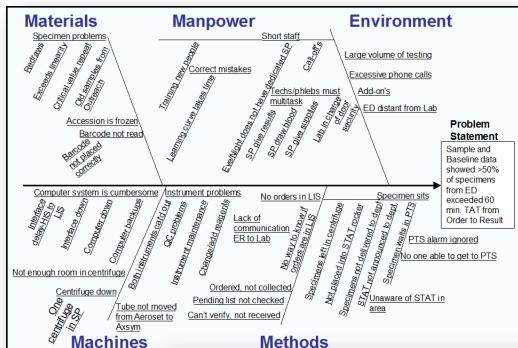
Common findings

- Congestion observed
- Placement of work tables and equipment dictate traffic flow
- Traffic patterns overlap work areas



LEAN: Workload Demand Analysis

Graphing workload allows for a better matching of system demand to available resources



LEAN: Moving to "Root Cause Analysis"

By asking the "5-whys" and mapping issues, previously unknown root causes may appear

-	Process Step or Requirement	Observed Defect	Why1	Why2	Why3	Why4	Why5	Barrier	Impact to Lean Process
	Workstations continually operating based on customer demand.			Reference tests not loaded to APS					Continuous flow stops
		· · · ·		Unaware of impact to lean process	instruction in	Not included in NEO	Oversight		Continuous flow stops
				Unaware of impact to lean process	instruction in	Not included in NEO	Oversight		Continuous flow stops

LEAN: Moving to "Root Cause Analysis"

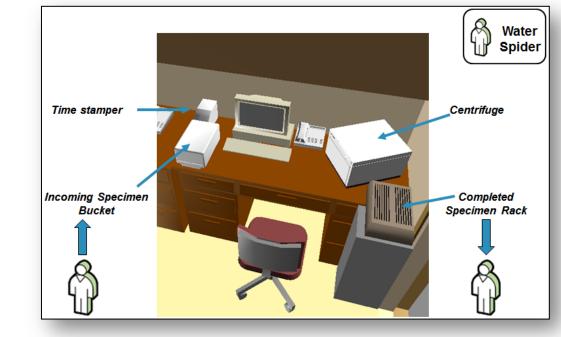
By asking the "5-whys" and mapping issues, previously unknown root causes may appear

			Priority Ma	atrix Exan	nple				
Importance Rating: 10 = h	igh importance, 1 =	low importanc	e		Enter rating in	gray boxe	es		
mplementation Rating: 10) = low, 1 = high								
mpact Rating: 10 = high i	mpact, 1 = low impa	ict							
lighest Weighted Total i	s optimal solution								
Lean Colution	Aspect"	Cost Of Implementati on	Duration of Implementat ion	Resource s Required	Aspect"	Reduce Defects	Reduce TAT	Ability to Reallocat e FTE	
Lean Solution	Aspect Importance Rating (Weight) 10 = High	1	7	5	Aspect Importance Rating (Weight) 10 = High	10	10	7	Weighted Total
Solution	Imp	lementation	Rating		Impact Rating"				
Standardize Centrifuge Fine to 3 minutes	10 = Lo w 1 = High	10	10	10	10 = High 1 = Low	1	10	1	247
mplement Customer Service for phone calls- appropriate staff for all shifts	10 = Low 1 = High	5	5	5	10 = High 1 = Low	\$	\$	1	232
mplement SpecTrac for coag and urines	10 = Low 1 = High	10	5	*	10 = High 1 = Low	5	5	5	220

Presentation Title Date

Company Confidential © 200X Abbott

LEAN: Specimen Processing


The work cell example below shows a "milk run" type operation

Effects of the model

- FTE Reduction
 - Staff to Demand
- Supply Reduction
- Inventory
 Management
 - Kanban
 - Supply Carts at Workstations

Reduce Paper

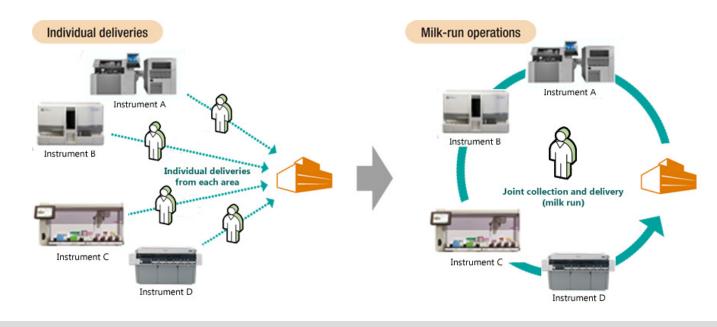
- Eliminate Paper where possible
- Automate Paper Processes

Put science on your side. ADD-00002298

Presentation Title Date

Company Confidential © 200X Abbott 18

LEAN: Milk Run & the Water Spider


A "Milk run" and "water spider" allows for optimal lab operation

Milk Run

 Standard route, timed schedule, quantity-variable delivery of specimens and replenishment of supplies.

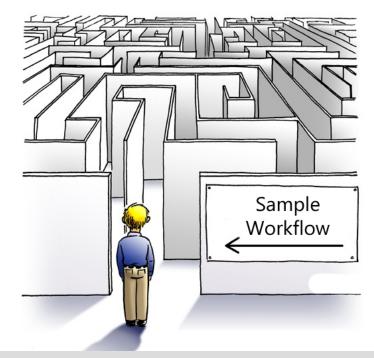
Water Spider

- Person assigned to support a production operation, so that others may focus exclusively on value-added work.
 - In a properly designed production cell, a water spider can raise the efficiency of the cell by as much as 90%, by allowing the rest of the production personnel to focus exclusively on value-added work

Put science on your side. ADD-00002298

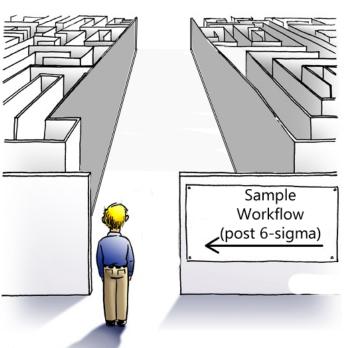
Presentation Title Date

Company Confidential © 200X Abbott 19



LEAN: Effects of workflow improvement

Inefficient layouts can lead to real efficiency drops which equates to increased cost


Lean Concept

- Reduce Waiting (inventory)
- Reduce Transportation
- Reduce Motion
- Eliminate rework / errors

Benefits

- Improve TAT
- Reduce labor
- Reduce errors
- Improve patient safety

Put science on your side. ADD-00002298

Presentation Title Date Company Confidential © 200X Abbott

The Lean Solution: Guidelines

Ensure adequate amount and capacity of equipment	 Eliminates delays waiting for centrifuges, analyzers, etc Analyzer and centrifuge capacity matches sample arrival and processing patterns
STAT's should use the same process flow as routine samples	 Allows the techs to stay focused on the fewest number of tasks STAT's should still be prioritized at each step in the process
Consolidate testing onto the fewest platforms	 Eliminates aliquots, multiple tube draws, and/or serial tube runs Ensures proper utilization of labor Need to ensure analytic quality is maintained
Keep each tech dedicated to the fewest number of tasks possible	 Eliminates the time and mental overhead associated with changing tasks

The Lean Solution: Guidelines

Place process steps and necessary resources as close together as possible

Move samples through the process in a *continuous flow* Eliminates transport time and delays, and discourages batching

 Eliminates batching delays and associated rework

Keep each tech dedicated to the fewest number of tasks possible

 Eliminates the time and mental overhead associated with changing tasks

Have each process step take the same amount of time

- Allows each tech to work on one sample or order before passing it to the next, all at the same time
- · The lab operates efficiently on a "pulse"

Implementing Lean in the Laboratory

Discard conventional ideas
Think of how to do it, not why it can't be done
Question everything - Ask 'why' at least five times
Start to solve it nowimmediate perfection is not expected
Correct mistakes at once
Spend money wisely
Best solutions surface when faced with hardship
Brainstorm then Try-Storm
Ideas are Infinite! Focus on Continuous Improvement
Continually Evaluate and Adjust

Put science on your side. ADD-00002298

10/3/13

Company Confidential © 2006 Abbott

