Lab Quality Confab 2013

Understanding and Using Six Sigma's Most Powerful Tools

Maureen Harte, MT(ASCP) Lean Six Sigma Master Black Belt President, HartePro Consulting

Course Objectives

- Recognize the most important tools to ensure a good project has been chosen.
- Recognize the most important tools to move through an improvement project.
- Understand tool usage and the outcomes of proper usage

Seven Basic Tools of Quality (source: Wikipedia)

"A designation given to a fixed set of graphical techniques identified as being most helpful in troubleshooting issues related to quality. They are called *basic* because they are suitable for people with little formal training in statistics and because they can be used to solve the vast majority of quality-related issues.

The seven tools are:

Cause-and-effect diagram (also known as the "fishbone" or Ishikawa diagram) Check sheet Control chart Histogram Pareto chart Scatter diagram Stratification (alternately, flow chart or run chart)

The designation arose in postwar Japan... It was possibly introduced by Kaoru Ishikawa who in turn was influenced by a series of lectures W. Edwards Deming had given to Japanese engineers and scientists in 1950. At that time, companies that had set about training their workforces in statistical quality control found that the complexity of the subject intimidated the vast majority of their workers and scaled back training to focus primarily on simpler methods which suffice for most quality-related issues."

Great, and

- How do we select the right project?
- How do we know what data to collect to use with those tools?
- How do we know what to do with the outcomes of those tools?
 - Answers
 - More questions
- How do we close the project and ensure successful handoff?

Six Sigma Roadmap

- Disciplined group of steps <u>always</u> used in sequence to identify root cause and decrease process variability
 - DMAIIC
 - <u>Define</u>
 - <u>Measure</u>
 - <u>Analyze</u>
 - Innovative Improvement
 - <u>Control</u>

Small or large – use the roadmap as a guide to increase QI success rate.

Project Selection and Chartering

Project Identification

- Value stream map waste and variation
- Recurring "fires"
 What are you constantly solving?
- Process initiation
 - Do it right the first time
- High "priced" issues
 - Quality
 - Productivity
 - Materials
 - Reputation customer confidence

Document to ensure you always have a good business case to justify QI time and projects.

Project Charter

- Documentation of agreement between management and project team on project goals, budget and timeline.
- Elements
 - Champion(s)
 - Problem description
 - Project scope
 - Stakeholders
 - Goal(s)
 - Current state metrics
 - Team members
 - Budget
 - Deadline
 - Milestones

Lean Six Sigma Project	<u>Charter</u>			
Project Name		Start Date		
Project Leader				
Champion (Project Sponsor)				
Other Executive Support				
Project Description (Problem Statement and Business Case)				
Project Scope (What is IN? What is OUT?)				
Stakeholders				
Project Goal(s)	Key Perform	ance Indica	tor (KPI)	
	Metric	Baseline	Goal	Stretch
Team Members	Signature	Da	<u>ite</u>	
Other Support Required (ad-hoc)				
Budget				
Deadline / Timeline Directive				
Milestone Events	<u>Target</u>	<u>Actual</u>	No	tes_
Define complete				
Measure complete				
Analyze Complete				
Innovative Improvement Complete				
Control Complete				
Project Closed				
Hand-off to:	Signature		Da	<u>ite</u>

Project Charter Project Description

- Problem statement
 - Specifically what is happening?

Business case

- Data!!
- What are the outcomes of the process today?
- What are the current expectations
- How are expectations not being met?

Define

Project Charter Project Description & Goal Cautions

- Beware of the following
 - A proposed solution
 - Third hand anecdotes of issues or impacts
 - Listing likely causes

Project Charter Resources and Timeline

- Think from the beginning about timing and who will be involved
 - During project team and ad hoc resources
 - Sustaining the solution.
- Recognize this is not an on-going project or "forever team"

Important Basic Concepts and Tools from the DMAIIC Roadmap

High Level Process Map - SIPOC

- Creates a picture of the process at a high level
- Identifies the key process steps
- Provides a place to begin using preliminary process data
- Identifies high level x's (process inputs)
- Identifies high level y's (process outputs)
- Documents key customers of the process

SIPOC

- Start with the process the focus of your project
- Minimal process steps (4-7)
- Inputs directly impact the process
- Outputs are a direct result from the last process step
- Customers are those directly affected by process output

HartePro Consulting, copyright 2013

14

Define

Project Scope

Narrowing the Scope

- Make early decisions based on current data
- Cycle time average and/or range, yield, error rate, etc.

Narrowing the Scope

SIPOC - Refined

Caution!

- Resist the urge to go from project identification to immediate data collection or analysis of historical data
- How do you know what data to collect or pull from history?

Funneling Potential Causes

- Measure
 - Identify all potential causes (x's)
 - Begin to funnel to critical x's
 - Collect data on identified critical x's

Linear Process Map

- Process identified on SIPOC
- Detailed identification of inputs (x's)
- Identification of outputs (y's)
- Presented in simple linear format
- Value added and non value added steps can be identified

Not a flowchart

Linear Process Map

23

Measure

Example Process Map with VA/NVA

			_
	Process Step		
Inputs	VA Mandatory NVA NVA	Outputs	
	Receive Airbills from Courier	Airbill Packages	
Supplier Delivery	Scan Airbill for Courier Manifest	Airbill Manifest	L
	Sort Airbills by Priority		
	Cut open Airbill		
	Remove Requisition and Specimen		
	Discard Empty Airbill Packaging		
Airbill Packages	Unfold & Verify Req for Accuracy	Printed Batch Chain of Custody	
	Verify Specimen for Min Volume, Seal		
Requisition	Integrety and Damage	Batched Requisitions	⊢
Processor (Employee)	Sign and Date Req Chain of Custody		⊢
Specimens	Enter Req Information into LIS	Labeled (Barcoded) Specimen	
Label	Assign Batch # / Location to Specimen		L
Computer Terminal	Print Barcoded Labels	Batched Specimens	L
Workstation	Apply Barcodes to Req and Specimen		
Barcode Printer	Add Specimen to Batch (Inventory)	Electronic Specimen ID Information	
	Add Requisition to Paperwork Batch		
	Print Batch Chain of Custody		
	Deliver Specimen Batch and Req Batch to Inventory Rack		
Batched Requisitions	Pull Batch from Inventory		
Printed Batch Chain of Custody	Transfer Req Batch to Verifier		
Electronic Specimen ID Information	Cut Specimen Seals		
Aliquoter (CV-1000)	Load Specimen Racks onto CV-1000 Instrument (Inventory)	Batched Aliquots	
Batched Specimens	Fill Instrument w/ Aliquot Tubes & Racks		
Operator	Enter Batch Information into LIS	Printed Aliquot Batch List	
Computer Terminal	Start Aliquot Run		
Aliquotting Disposibles	Collect Finished Samples / Specimens	Verified Requisitions	Ī
Hitachi Sample Trays	Place Aliquot Racks onto Inventory Tray		1
Printer	Print Aliquot Batch Chain of Custody		1
	Deliver Aliquot Batch and Batch List to Screens Department		
Batched Aliquots Printed Aliquot Batch List	Screens Department Tests Batch	Screened Specimen Results	
			i i

Prioritization Matrix

- Use all inputs potential critical x's identified in process map
- Use identified requirements of the process/product (CTQs)
- Begin funneling x's with a prioritization matrix
 - Funnel to critical few to focus data collection efforts

List All CTQs

	Output Variables	Results returned in 60 minutes	Critical results confirmed & called	Department notified of expected delays	<mark>Average TAT</mark> varies <15 mins	Total	-0
	vveignt						
S							
es ble							
abl uria							
ari Va							
t V ess							
ndi							
P ₁							

25

Measure

Rank and Weight the CTQs

-	Output Variables	Results returned n 60 minutes	Critical results confirmed & called	Department notified of expected delays	4verage TAT ≀aries <15 mins	Total	-2
	Weight	9	9	<u>5</u>	5		
s							
ole iab							
rial 'ar							
Val s V							1
ut ' ces							
np' ro							

HartePro Consulting, copyright 2013

26

List All Input and Process Variables

	Output Variables	Results returned in 60 minutes	Critical results confirmed & called	Department notified of expected delays	Average TAT varies <15 mins	Total
	Weight	9	9	5	5	
	Test requisition					
ss oles	Ordering location					
ble iat	Phlebotomy					
ria ⁄ar	Testing staff					
Va ss V	Department staff					
nput Proces	Analyzers					
	Time of day					
	Test type					

Evaluate the Relationship Between CTQs and Input/Process Variables

	Output Variables	Results returned in 60 minutes	Critical results confirmed & called	Department notified of expected delays	Average TAT varies <15 mins		Total
	Weight	9	9	5	5		
	Test requisition	9	1	1	5		
	Ordering location	5	1	1	1		
les les	Phlebotomy	9	1	5	1		
iab iab	Testing staff	9	9	9	1		
Var Var	Department staff	1	5	5	1		
Input Trocess	Analyzers	5	1	1	9		
	Time of day	5	9	5	5	X	
	Test type	9	1	1	9		

29

Cross-Multiply Weight and Rank

	Output Variables	Results returned in 60 minutes	Critical results confirmed & called	Department notified of expected delays	Average TAT varies <15 mins	Total	
	Weight	9	9	5	5		
	Test requisition	9	1	1	2	120	
es	Ordering location	5	1	1	1	64	5
les able	Phlebotomy	9	1	5	1	120	
ab] arie	Testing staff	9	9	9	1	212	
ari Va	Department staff	1	5	5	1	84	
iput V rocess	Analyzers	5	1	1	9	104	
	Time of day	5	9	5	5	176	
In Pı	Testtype	9	1	1	9	 140	

Highlight the Critical Few Variables								
	*Ask: "Does this make sense? Common sense is critical as you make your way through the DMAI ² C roadmap							
	Output Variables	Res in 6	Crit con calle	Dep noti exp	Ave vari		Total	
	Weight	9	9	5	5			
	Test requisition	9	1	1	5		120	
S	Ordering location	5	1	1	1		64	
es Ible	Phlebotomy	9	1	5	1		120	
abl uria	Testing staff	9	9	9	1		212	
ari Va	Department staff	1	5	5	1		84	
Input V Process	Analyzers	5	1	1	9		104	
	Time of day	5	9	5	5		176	
	Testtype	9	1	1	9		140	

Prioritization Matrix

- Identify inputs (x's) most likely to be contributing to the root cause of the problem.
- Now what?
- Determine need for risk analysis
 Failure modes and effects analysis
- Project focused on critical area or process
- Project including multiple x's with associated risk
- If risk not an issue move to data collection plan

Failure Modes and Effects Analysis (FMEA)

- Focuses x's critical to satisfying the CTQs.
- Structured approach to identifying, estimating, prioritizing, and evaluating risk.
- Aims at failure prevention.
- Identifies things that could be fixed right away
- Evaluates the impact, frequency, and ability to detect a process failures.
- Used again in Innovate and Improve phase used to limit the risk involved in implementing changes.

32

Measure

33

Failure Modes and Effects Analysis (FMEA)

•Assess potential risks of identified solutions BEFORE the pilot.

FMEA Terminology

- Potential Failure Mode: Any way the input or process could fail
- Potential Effect of Failure: How the failure affects the customer
- Severity: A numerical score of the seriousness of a specific effect from one of the failure modes (higher score is worse)
- Cause: How the failure mode could occur, described in terms of something that can be corrected or controlled

34

FMEA Terminology

- Occurrence: A numerical score of the likelihood that a specific cause would occur (higher score is worse)
- Controls: Any efforts that are already in place to identify the failure mode before it affects the customer
- Detection: A numerical score of the vulnerability of current controls in allowing the failure mode to reach / affect the customer (higher score is worse)
- RPN = Risk Priority Number: The product of the Severity, Occurrence and Detection scores (S x O x D)

35

Drawbacks of RPN

- Remember RPN is a number based on subject matter expertise that's still highly subjective.
- Use common sense and ask questions before jumping into action.
 - Example:

<u>RPN</u>	Failure Mode	Sev	<u>Occ</u>	Det
160	А	10	4	4
200	В	4	10	5

- Though both failure modes might require action, Mode A requires immediate action to prevent injury.
- Ease of implementation should also be considered; don't delay identified quick fixes just because they have a low RPN.

HartePro Consulting, copyright 2013

36

Measure
FMEA Scales

- Scales for severity, occurrence, and detection can be adjusted if necessary.
- Before you use the standard scales, make sure they are in line with the organization.

37

Measure

Severity Rating Scale Example

Severity = impact of the potential failure on the customer

_	Rating	Criteria: A failure could…
Bad	10	Injure a customer or employee
1	9	Beillegal
	8	Render the product or service unfit for use
	7	Cause extreme customer dissatisfaction
	6	Result in partial malfunction
I I	5	Cause a loss of performance likely to result in a complaint
	4	Cause minor performance loss
÷	3	Cause a minor nuisance; can be overcome with no loss
Good	2	Be unnoticed; minor effect on performance
0000	1	Be unnoticed and not affect the performance

Source: www.fmeainfocenter.com HartePro Consulting, copyright 2013

Severity Rating Scale Example

Severity = impact of the potential failure on the organization

	Rating	Criteria: A failure could…
Bad	10	Damage without warning
	9	Damage with warning
	8	Very high risk
	7	High risk
	6	Moderate risk
Î	5	Low risk
	4	Very low risk
	3	Minor risk
Good	2	Very minor risk
U UUU	1	No risk at all

Occurrence Rating Scale Example Occurrence = likelihood that a specific cause will occur

	Rating	Time Period	<u>Probability</u>
Pad	10	Very high	1 in 2
Dau	9	Very high	1 in 3
	8	Very high	1 in 8
	7	High	1 in 20
	6	High	1 in 80
	5	Moderate	1 in 400
	4	Moderate	1 in 2,000
1	3	Low	1 in 15,000
	2	Low	1 in 150,000
Good	1	Remote	1 in 1,500,000
			0

Source: www.tmeainfocenter.com HartePro Consulting, copyright 2013

Sample Occurrence Rating Scale

Occurrence = likelihood that a specific cause will occur

_	Rating	Time Period	Pro	Probability			
Rad -	10	More than once per day	>	30%			
	9	Once every 3–4 days	≤	30%			
i	8	Once per week	≤	5%			
Ĭ	7	Once per month	≤	1%			
ļ	6	Once every 3 months	≤	.03%			
	5	Once every 6 months	≤	1 per 10,000			
	4	Once per year	≤	6 per 100,000			
1	3	Once every 1 – 3 years	≤	6 per million			
	2	Once every 3 –6 years	≤	3 per 10 million			
Good	1	Once every 6-100 years	≤	2 per billion			

Sample Detection Rating Scale

Detection = vulnerability of the current controls to allow the failure mode to impact the customer

	Rating	Definition	
_	10	Absolute uncertainty	
Bad	9	Very remote	
	8	Remote	
	7	Very low	
1	6	Low	
	5	Moderately	
	4	Moderately high	
	3	High	
V	2	Very high	
Good	1	Almost certain	
			0

Sample Detection Rating Scale

Detection = vulnerability of the current controls to allow the failure mode to impact the customer

	Rating	Definition
_	10	Defect caused by failure is not detectable
Bad	9	Occasional units are checked for defects
İ	8	Units are systematically sampled and inspected
	7	All units are manually inspected
ļ	6	Manual inspection with mistake-proofing modifications
	5	Process is monitored (SPC) and manually inspected
İ	4	SPC used with an immediate reaction to out of control conditions
¥	3	SPC as above with 100% inspection surrounding out of control conditions
Good	2	All units are automatically inspected
	1	Defect is obvious and can be kept from affecting customer

SPC = Statistical Process Control HartePro Consulting, copyright 2013

Example of FMEA

44

Measure

Process Name:	Lab Order - Lab Results					Prepared by:		
Responsible:	Process Owner					FMEA Date (Original)09/08/	/07	
Process Function	Potential Failure Mode	Potential Effects of Failure	S E V	Potential Cause(s)/ Mechanism(s) of Failure	0 C C	Current Process Controls	D E T	R P N
The highest value process steps from the C&E matrix.	In what ways might the process potentially fail to meet the process requirements and/or design intent?	What is the effect of each failure mode on the outputs and/or customer requirements? The customer could be the next operation, subsequent operations, another division or the end user.	How Severe is the effect to the customer?	How can the failure occur? Describe in terms of something that can be corrected or controlled. Be specific. Try identify the causes that directly impacts the failure mode, i.e., root causes.	How often does the cause or failure mode occur?	What are the existing controls and procedures (inspection and test) that either prevent failure mode from occurring or detect the failure should it occur? Should include an SOP number.	How well can you detect cause or FM?	SEV x OCC x DET
Physician writes order for lab in the morning	Incorrect lab test ordered; ordered on wrong patient	Necessary lab result is unavailable	2	Lack of sleep, Med student ordered wrong lab test	2	No formal controls	2	8
Nurse signs off order; floor clerk enters lab order	First day on unit for pool/float nurse	Pool nurse does not make correlation between patient condition and appropriate or inappropriate lab work order	2	Pool/float nurse is unfamiliar with patient history and is overwhelmed with patient load	5	No formal controls	3	30
Night charge nurse makes rounds on patients	Night Clinical Nutrition makes rounds at 20:00 but fails to educate patient on fasting morning lab	Patient eats breakfast in the morning unaware of need to fast or inform nurse that breakfast was placed in her room	1	Night Clinical Nutrition is also assigned to 3 patients; the rounds at 20:00 are brief	3	No formal controls	5	15
Dietary personnel prepare to serve breakfast	Dietary personnel fail to review "hold" breakfast patient list	All patients, regardless of "hold" breakfast status receive a meal	3	Staffing shortage in dietary department	8	No formal controls	9	216
Lab personnel draws morning lab	Quality controls are conducted on lab equipment at 06:30	Breakfast is served at 07:00 before lab draws; blood work is no longer based on fasting levels	3	Morning lab draws are delayed until 07:30	8	No formal controls	6	144
Physician makes round at 09:30 and reviews lab results posted on patient chat	Physician reviews lab results and does not realize the lab order was incorrect and the patient was not fasting	Physician orders new medications and treatment for patient	4	Physician has many patients to see; physician assumes the order was correct	2	No formal controls	4	32
Source: O	CD ValuMetrix, 2	007	<u> </u>			Total Risk Priority Num	ber =	445

Key Inputs are Identified Now for the Data

Data Collection Plan

Critical inputs (x's) priortization matri FMEA	from x and	<u>Wha</u>	at do we need to know about	the inpu	<u>t (x)?</u>	Type of data?	How v	vill it	be collected?	
1. List critical inputs (x's)	1. List 2. Identify critical key aputs (x's) questions that need to be answered.			 3. Identify the type of data needed to answer key questions. Data may have to be collected. Note: some data may already be available. 			 4. What is the actual plan for collected? Representative data – times, days, length of time, number of data points, etc. 			
<u>Operational definit</u>	tions an	d sta	andardized directions on data	<u>collectio</u> s of v	n vha	t data is to b	be collec	etec	l AND	
<u>Worksheets to be t</u>	eX	act mo	t standardized p easurement syst	roceo em a	lur nd	e for collecti how to keep	ing. Thi) it cons	nk iste	about ent.	
6. Name worksheets developed for documentation of data being collected for each input (x)										

Case Study: Turnaround Time

- A 5-site laboratory system is investigating TAT issues
- TAT goal: 95% compliance to 60 minutes
- Current state:
 90 minute average
 Variation of 30-180 minutes

What should be done with Laboratory B?

Laboratory	% meeting 60 minute goal
Α	78%
В	42%
С	86%
D	77%
E	68%

Case Study (cont'd)

- Operational definitions are extremely important.
- How is TAT measured?
- Laboratory B definition: Collection to result
- Other sites: Receipt to result

Do your definitions match those of the customer and/or comparative locations?

Laboratory	% meeting 60 minute goal
А	78%
В	42%
С	86%
D	77%
E	68%

49

Measure

Data Displays

Incurred Medical + Incurred Indemnity for Current Open Claims 1998-2003

50

Common Types of Data Displays

Data Display	Purpose	Type of Data Used
Time Series Plot	Track a measurement over time to identify patterns, problems & opportunities	Numeric data in time order – can be Continuous (\$, cycle time) or Discrete (proportion, count)
Control Chart	Same as Time Series Plot, plus helps to detect Special Cause variation	Numeric data in time order – can be Continuous (\$, cycle time) or Discrete (proportion, count)
Frequency Plot	Reveal the shape or 'distribution' of data, by showing how often different values occur.	Numeric, Continuous data
Pareto Chart	Break a big problem down into its parts and identify which parts are most important	Discrete (attribute) data where categories can be counted or quantified
Scatter Plot	Detect a potential relationship between two variables	Numeric, Continuous data

Time Ordered Data

- Visual representation
- Immediate identification of data changing over time.
- When process conditions change the data points will often shift to some degree.

52

Control Charts

- Time ordered plot
- Statistically determined control limits are added

When and Why Use Control Charts

- To track process performance and variation over time
- To evaluate progress after process changes/ improvements
- To distinguish common-cause variation from specialcause variation
 - A point outside control limits signals a special cause
 - Several other non-random patterns also signal special causes (as on a Run Chart)
- Can be used for almost any type of data collected over time.
- Provides a common language for discussing process performance.

Control Limits vs. Specification Limits

- Control limits are calculated from the set of data
 - Voice of the process
 - Tell us if the process is stable / predictable
- Specification limits come from the customer
 - Voice of the customer
 - Do not provide information on process stability

Key Tools for Process Analysis

Cause and Effect Diagram (fishbone)

Key Tools for Data Analysis

- Data stratification
- Scatter plots
- Pareto analysis

Time in minutes from Program Time to Recieve Time

CV-1000 Errors (By Instrument # and Cumulative %) Top 15 Errors only

57

Stratifying Data

- Break the data into logical groups
- One group within a set of data may be driving cause and remains hidden until stratified.

o Consulting, copyright 2013

Stratified Frequency Plot Example 1: Time to Complete Test

It appears that tests done at Lab B have a lower average TAT than those at Lab A or Lab C.

Next step:

58

Find out if this is true. If so why? Root cause of something good.

59

When and Why to Use Frequency Plots

- To reveal the centering, spread, and variation of the data
 - Visual representation makes tabular data easy to understand or interpret
- To investigate the underlying statistical distribution of the data (hard to detect patterns with < 50 data points)

Time Needed to Implement Approved Suggestions for Improvements

Analyze

Pareto Analysis - the 20/80 Rule

- Pareto rule: 20% of the inputs (products, customers, etc.) are causing 80% of the problems
- Pareto chart is a chart separating the data into frequency bars based on output data.
- The bars with highest frequency of the output (cost, time, errors, etc.) are on the left side of the graph
- 100% of the data is contained in all bars

Pareto Chart Example

• What does this tell us?

HartePro Consulting, copyright 2013

61

Analyze

Analyze

Pareto Chart Example

• What does this tell us?

Generating Solutions

- Review critical x's with team.
- Use knowledge from process tools.
- Multiple ideas may be combined to form a solution.

Evaluating Potential Solutions

- Evaluate with one or more of the following:
 - Solution prioritization matrix
 - Score potential solutions against defined criteria
 - Cost-Benefit Analysis
 - Quantify and compare the return on investment
 - Effort vs. Impact plot
 - Design of experiments (advanced statistical tool)
 - An efficient way of testing many solution variations to compare their impact

64

Improve

Solution Prioritization Matrix

			ria 1	ria 2	ria 3	ria 4	ria 5	
		Criteria	Crite	Crite	Crite	Crite	Crite	
		Weight						Sum
s	Potential Solution 1							0
utio	Potential Solution 2							0
Sol Pro ture	Potential Solution 3							0
tial ev Feat	Potential Solution 4							0
r Ne	Potential Solution 5							0
Po 0	Potential Solution 6							0

Solution Prioritization Matrix

		1. Identify and list criteria					
	Criteria	Criteria 1	Criteria 2	Criteria 3	Criteria 4	Criteria 5	
	Weight		2. Weight criteria				Sum
tial Solution ew Process eature	Dotontial Solution 1	Γ					0
	3. List potential solutions						
	Potential Solution 3	4. I	4. Rank/score solutions			ns	0
	Potential Solution 4	bas	based on how well they satisfy criteria. Suggested scale 1, 5, 9				0
r Ne	Potential Solution 5	C					0
Po O	Potential Solution 6	SU					0
		((nign score "best")				•

5. Highest sum = best potential solution

Best Potential Solution

- Check against common sense
- Check against CTQs and critical x's identified
- Complete failure modes and effects analysis
- Pilot!!

Failure Modes and Effects Analysis FMEA

- Assessing risks
- Identify, limit or completely mitigate risks associated with potential solutions
- In some cases the only way to limit or mitigate is to disregard or eliminate the solution from the list.

Cost Benefit Analysis

- Financial comparison of solutions
- Provides data for Champion and stakeholder acceptance of solution
- Once FMEA is complete gather as much financial information on proposed solution as possible.
- Use financial metrics common for organization

Effort vs. Impact Plot

- Common sense tells you time or effort to implement may be high but it's worth it.
- Subject matter experts quantify impact versus the effort as much as possible to justify potential solution(s)

HartePro Consulting, copyright 2013

Soln. = Potential Solution

When to Pilot

- Medium to large scale, smaller when high risk
- Results need to be confirmed
- Ease of implementation needs to be confirmed
- Reduce risk of implementation failure
- Scope of the change is large and failure would be very costly

71

Improve

Implementation Steps

- Identify process owner and document responsibilities.
- Communicate to customers and stakeholders.
 - Scope of change as it relates to each
 - Timeline of implementation
- Complete documentation of new process.
 - Written and visual instruction, i.e. flowcharts
- Provide comprehensive training.
- Revise job descriptions as required.
- Implement on the full scale.
- Monitor and manage issues until process has settled.

72

Improve
Control

Control Plan/QC Process Chart

• Used to clearly document PDCA (Plan, Do, Check, Act)

• Plan/Do

- All essential steps
- Flowchart is common
- Check
 - Items being monitored and specifications
 - Quality measures
- Act
 - How to respond
 - Who is responsible

PLAN / DO	CHECK	ACT
Flowchart	Indicators	Corrective
	Plot time on each order; should be <u><</u> 2 hours; check for special causes	If time exceeds 2 hours, alert Sam immediately; organize investigation
	Count errors	If more than 1 per order, stop process, contact Sam

HartePro Consulting, copyright 2013

Project Closure

- Clearly communicate results
 - Post in area with wide access
 - Open meeting
- Recognize team
- Communicate plan for sustaining results and continuous improvement

HartePro Consulting, copyright 2013