

2013 Lab Quality Confab

Fewer Hospital Acquired Infections (HAIs), Improved Patient Outcomes, and Millions of Dollars in Savings by Leveraging Technology

Denise Uettwiller-Geiger, Ph.D., DLM (ACSP) Director of Laboratory and Clinical Trials John T. Mather Memorial Hospital Port Jefferson, NY

Learning Objectives

Describe the Laboratory's role in the identification of HAIs using new technologies

- Discuss how enabling technologies and staff collaborations can aid in the management of HAIs
- Demonstrate how the Laboratory can contribute to performance driven healthcare

John T. Mather Memorial Hospital

Our Mission is to be the best community hospital in New York State

U.S. News & World Report's Best Hospital Rankings

Magnet Status

Ranked #31 in New York Ranked #42 in NY Metro Area 248 Bed Community Hospital established in 1929

Located North Shore on Long Island in Suffolk County

Continually changing to meet the needs of the community

2013 Lab Quality Confab

Lab Information

The Case for Investment... Laboratory Diagnostics Information...

- Medical risk and quality management
- Improves medical decision-making
- Changes the course of disease
- Reduces the burden of disease

Healthcare total spending: \$2.60 trillion in 2010 or \$8,686 per person \$2.00 trillion in 2005 or \$6,697 per person

Source:CMS.gov

The Case for Investment

Labs are only 3% of

2013 Lab Quality Confab

The Challenges

2013 Lab Quality Confab

Scope of the Problem

Hospital Acquired Infections

Hospital infections cost \$9.8 billion a year

Source: JAMA Internal Medicine September 2013

Hospital Acquired Infections

- In the US, hospital acquired infections (HAIs) afflict nearly 2 million patients and kill approximately 99,000 people annually.
- Every year an estimated 1.7 million
 Americans develop a new infection while hospitalized.

Clostridium *difficile* Infections (CDIs) and Deaths Reach and Remain at Historic Highs

- CDI hospitalizations
 Increased 3-fold 2000-2009
- Deaths linked to CDI
 14,000 in 2007
- \$1 billion in medical costs
 CDIs in hospital patients only
 - **Epidemic strain**
 - First emerged in 2000
 - Causes more cases and severity

2013 Lab Quality Confab

Mather Experience

Rapid Active Surveillance J.T. Mather Objectives

- Improve the diagnosis and identification of MRSA and C. difficile infections
- Identify patients that are colonized or infected
- Place colonized/infected patients into contact isolation
- Reduce patient-to-patient transmission
- Reduce HAI infections and associated morbidity and mortality
- Improve patient safety and outcomes
- Comply with regulatory requirements

Mather's Surveillance Program

Our Campaign:

The BUG Stops Here!

Rapid Surveillance is the Foundation for Effectively Eliminating HAI'S

Teamwork

Surveillance Program should include:

Senior Hospital Leadership Infectious Disease Professionals Clinical Laboratory Pharmacists Nursing Management/Staff Physicians Environmental Services

Clostridium *difficile*

Clostridium *difficile*

Mather Algorithm for Rapid Accurate Diagnosis of C. diff

Interpretation of Results

C. DIFF QUIK CHEK COMPLETE™

Simultaneously tests for: C. difficile antigen (GDH) & A/B Toxins

Cepheid GeneXpert®

- Automates and integrates sample purification, nucleic acid amplification, and detection of the target sequence in samples
- Uses real-time PCR and RT-PCR
- Uses primers and probes to detect a proprietary sequence for the presence of a cassette inserted into the *C. diff* chromosome in a single test cartridge
- Delivers test results in less than an hour
- Available on-demand in real time, around the clock, allowing for fast interventions by clinicians and infection control preventiontists when C. diff is detected.

C.difficile Testing Cost-Benefit

Costs

Total Testing Volume

- 2009: 275/mo = 3,107/yr
 2010: 148/mo = 1,774/yr
 2011: 160/mo = 1,919/yr
 2012: 122/mo = 1,522/yr
- Simultaneous EIA- \$12 per test
 PCR Assay ~ \$40 per test
- Cost 2010: \$ 26,968
- Cost 2011: \$ 33,108
- Cost 2012: \$ 26,384

Total Testing Cost: \$86,460

- NO ADDITIONAL FTE'S
- C. diff testing performed 24/7

Savings 248 bed hospital

82,373 patient days/91% occupancy

Rate of Infection/1000 Patient Days

- 0.95/1,000 = 70.0 infections (2009)
- 0.57/1,000 = 46.0 infections (2010)
- 0.65/1000 = 50.0 infections (2011)
- 0.34/1000 = 26.0 infections (2012)

(2009 vs 2012)

Difference = 44.0 infections @ \$35,000

Decrease in 2010 hospital costs = \$840,000 Increase in 2011 hospital costs = \$140,000 Decrease in 2012 hospital costs = \$840,000

> \$1,540,000 cost avoidance Net Savings \$1,453,540

Cost Savings Using a Simultaneous Two Test Algorithm PCR vs. Quik Chek Complete- 2012

100% of patients tested with PCR

Clinical Outcome Results for 2012

- Improved services by providing simultaneous testing for GDH and Toxins
- Implementation of reflex to PCR for Ag+/Toxin-
- Increased Awareness of HAI's
 - **Achieved Best Practices in:**

Rapid MRSA Screening

Molecular Diagnostics Detection and Screening Technology

Culture – The Gold Standard

- Traditional microbiology 48 hr broth enrichment
- Sensitive
- Low cost

- **Report final results in 96 hours (4 days)**
- After many patients are discharged but not before they have had an opportunity to transmit their MRSA to others

Molecular Diagnostics

Direct method of infectious agent detection

 Identification of infectious organisms through the detection of DNA/RNA sequences

Dramatically reduce (TAT)

Symptoms of MRSA

Severe Infections Usually in healthcare settings

- Bloodstream infections
- Pneumonia
- Surgical site infections

Cepheid GeneXpert®

- Automates and integrates sample purification, nucleic acid amplification, and detection of the target sequence in samples
- Uses real-time PCR and RT-PCR
- Uses primers and probes to detect a proprietary sequence for the presence of a cassette inserted into the *C. diff* chromosome in a single test cartridge
- Delivers test results in less than an hour
- Available on-demand in real time, around the clock, allowing for fast interventions by clinicians and infection control preventiontists when C. diff is detected.

Active Surveillance For MRSA Cost-Benefit Molecular Testing (PCR)

Costs

Screened high risk patients

- 2008: 88/mo = 1,050/yr
- 2009: 139/mo = 1,663/yr
- **2010:** 176/mo = 2,107/yr
- 2011: 182/mo = 2,181/yr
- 2012: 164/mo = 1,967/yr
- PCR Assay ~ \$50 per test

 Total Screening Cost \$448,400

• NO ADDITIONAL FTE' S

MRSA testing performed 24/7

Savings

248 bed hospital 82,373 patient days/91% occupancy

- 0.90/1,000 = 74.0 infections (2007)
- 0.59/1,000 = 48.0 infections (2008)
- 0.29/1,000 = 23.0 infections (2009)
- 0.25/1,000 = 19.0 infections (2010)
- 0.17/1,000 = 13.0 infections (2011)
- 0.23/1,000 = 18.0 infections (2012)

(2007 vs 2012)

Difference = 56.0 fewer infections @ \$35,000

Decrease in 2008 hospital costs = \$910,000 Decrease in 2009 hospital costs = \$875,000 Decrease in 2010 hospital costs = \$140,000 Decrease in 2011 hospital costs = \$210,000 Increase in 2012 hospital costs = \$175,000

\$1,960,000 cost avoidance

Net Savings Due to Prevention \$1,511,600

Clinical Impact and Financial Metrics

- Implementation of an Active MRSA High Risk Screening Program
- Improved services by bringing Molecular testing in-house
- Increased Awareness of HAI's

Achieved Best Practices in:

Decreased Infection Rate

Total Cost Avoidance/Reduction for MRSA Screening and C. *difficile* is

Balancing Healthcare Costs Making the financial case at JT Mather:

Surveillance \$534,860

Cost of Infection \$3,500,000

Saving: \$2,965,140

Length of Stay

- Implementation of an Active MRSA Screening Program
- Improved services by bringing Molecular testing in-house
- Increased Awareness of HAI's

Length of Stay in ICU and CCU

John T. Mather Memorial Hospital

Patient Admissions Number of Patient Care Days

Improving Patient Management

Appropriate utilization of resources improves patient flow

2001-2002- <u>854</u> saved patient care days <u>254</u> more patient admissions generating additional revenue of \$1,270,000

2004-2007- <u>1575</u> saved patient care days <u>451</u> more patient admissions generating additional revenue of \$2,255,000

2009-2011- <u>1648</u> saved patient care days <u>85</u> more admissions generating additional revenue of \$425,000

Total Savings: \$3,950,000

Measurable Outcomes of Rapid HAIs Surveillance Programs

- Rapid and effective management for reduction of Hospital Acquired Infections (HAI)
- Making evidence-based, data driven decisions
- Defining comprehensive outcome measures
- The impact of value added measures on patient outcomes, cost, cost effectiveness, rapid turnaround time, technology selection, reduced infection rates and enhanced patient safety and satisfaction
- Laboratory can play a major role in reduction of HAIs

2013 Lab Quality Confab

See Cliff sniff C. diff! In fact, it refers to one hospital's innovation for early detection of (*C. diff*): a two-year-old beagle named Cliff. Cliff the Beagle is faster at detecting certain infections than the standard clinical laboratory tests used daily in hospitals throughout the world.

2013 Lab Quality Confab

2013 G2 Volume to Value

Thank You

Questions????

