

Real Time Management of All Operational Domains and Workflows in Your Laboratory

Chris Christopher Csquared Global Healthcare Consulting **Objective:**

Gain insights into achieving higher levels of productivity using Real Time Monitoring for each lab's unique workflows

Chris Christopher Csquared Global Healthcare Consulting

Questions Pursued

- <u>**Current State</u>**: How can I quickly know that my lab is running smoothly and efficiently?</u>
- <u>Capacity</u>: How can I determine if our lab can take on additional work without adding new instruments or staff?
- **Contingency Planning**: What happens if...?

Preface... Why this is important today...

- Changing Dynamics in Healthcare
- Complexity of the Clinical Laboratory

The Complexity of the Clinical Laboratory

> 600 Unique Tests can be Ordered by the Physician with different priorities and specimen types

- * Key Flows within the Lab
- * Achieving Maximum Performance
- * Theory of Constraints and Bottlenecks
- * Optimizing System Performance
- * Process Reviewed

3 Primary 'Flows' within Each Lab

Determined by the Instrument

Conclusion: No two labs are alike!

Taking a Closer Look at Sample Flows from Order to Report

Automating Sample Flows from Order to Report

Label

Transport

Rack & Load

Lab Automation

Achieving Maximum Performance via Process Control

Setup

Workload Balance

Capacity

The Goal: Maximize System Performance

Process

- 1. Forecast Demand
- 2. Determine Capacity
- 3. Exploit Constraints
- 4. Balance Workloads <Repeat>

Forecasting Demand

Use Historical LIS Data and Apply Assumptions for Change (determining Peak Day of Week)

Considerations:

Step 1

- Current Daily Workloads
- Test Density
- Seasonal Changes
- Growth Plans
- Market

Forecasting Demand

Consideration: PEAK Hours of Operation

Step 2

Determine Current System Capacity

Within any given system, there is always ONE Constraint which limits the Systems overall Throughput / Capacity

One Approach

- Use non-time sensitive Orders / Accessions
- Collect and Hold 3 to 6 hours of Pending Orders (# should exceed system capacity)
- Process the Pending Work using Continuous Feed

Observe where Queues or Bottlenecks form -- Count / Estimate the # WIP

 Quantify System Capacity by using LIS data to determine actual PEAK throughput per hour by Accession / Panel / Test

What happens if....?

Exploit Constraints

Eliminating Constraints will increase the Systems overall Throughput & Capacity

Common Constraints

- System Design
 - Configuration
 - Instruments
 - Processing / Track Module
- Menu / Ordering Patterns
- Test Density
- Routing (Process Control)
- Skilled Labor

Background

Exploiting Constraints

Theory of Constraints (TOC)¹

- Every system, no matter how well it performs, has at least one constraint that limits its performance described as the system's "weakest link."
- A system can have only one constraint at a time, and that other areas of weakness are "non-constraints" until they become the weakest link.
- A Constraint limits the overall throughput of other components on the line which results in longer cycle times and unused Capacity

¹ Dr Eli Goldratt "The GOAL"

Background

TOC / Bottleneck

- A bottleneck is a stage in a process that causes the entire process to slow down or stop resulting in a longer overall cycle time and reduced capacity.
- Chokepoint / Weak Link

Investopedia

Definition of '**Bottleneck**' A point of congestion in a system that occurs when workloads arrive at a given point more quickly than that point can handle them. The inefficiencies brought about by the **bottleneck** often create a queue and a longer overall cycle time.

Background

The System Constraint Can be in Any Area

Constraint

Outcomes

Process to Identifying the System Constraint

Look for the location where there is an increasing number of tubes in the queue waiting for the next step in the process (WIP)

Exploit the Constraint

Understand the 'Why'

- Configuration Settings not optimized for the Workload
- Demand Exceeds Capacity
- Like instruments or modules underutilized
- Rejections (barcode misreads, test not assigned)

Tubes continuous going around the track

Example

Utilization

Utilization = the rate at which potential output levels are being met or used. Displayed as a percent of actual throughput processed based against known performance of a given component or module.

Capacity / Utilization

Example

Limited to the Overall System's Constraint which can Change based upon Demand

Lab Automation Constraints

Cycle Times Vary ≠ Demand

	Max. Sample Throughput per Hour
Input / Output	800
Centrifuge	300
Decapper	800
Bulk Input Module	1000
Track U Turn	2100
Track T Turn	3600
Rack Input Module	800
Aliquot	500
Recapper	800
Refrigerator Storage	800

Instrument Name	Tubes/Hour	Tests/Hour	Sampling Type	Instrument Category	Details
Tosoh G8	37	37	Point of Space	Chemistry	Hemaglobin A1C - HPLC
ADVIA 1800	200	1800	Point of Space	Chemistry	18 sec ISE, 3 sec photo
ADVIA 2400	200	2400	Point of Space	Chemistry	18 sec ISE, 2 sec photo
Alifax Jo Plus	20	20	Point of Space	Hematology	Automate ESR
ADVIA 2120i	120	120	Pick & Place	Hematology	2 cycle type CBC, Reticulocyte
ACL Top LAS	100	120	Point of Space	Hemostasis	2 cycle type
CS-5100	100	400	Point of Space	Hemostasis	2 cycle types
Liaison XL	57	121	Point of Space	Immunoassay	1 cycle type
Immulite 2000	200	200	Pick & Place	Immunoassay	5 cycle types 1-Pass, 2-Pass No Pretreat, 2-Pass Pretreat, 3-Pass, 4-Pass
Centaur	240	240	Point of Space	Immunoassay	4 cycle type, 1 Pass, 1 Pass Extended, 2 Pass, 2 Pass Extended
EXL 200	67	624	Point of Space	Integrated	3 cycle type
Vista 1500	200	2000	Point of Space	Integrated	3 servers, 5 cycle types

Module Capacity

Dependencies: System Design, Configuration and Workloads

Example

Day: 27 Total Tests: 585

Day: 27 Total Tests: 7,933 Selected Tests: 4,235 Percent of Total Tests: 53.38%

Repeats: Impact of 'Tight Ranges'

QC Rules resulting in ~ 19% of Accessions Repeated

Impact of 'Shared Tubes'

(When Tubes are routed to Different Instruments due to Tests Ordered or Instrument Setup)

Summary: Steps to Manage Constraints

It's a journey of Continuous Improvement with Perfection Unattainable

Identify the Process' Constraint

Find the Largest WIP Inventory Explore the reasons as to 'Why'

Decide how best to Exploit the Constraint

Optimize Instrument Speed; Add Capacity Give Maintenance High Priority & Off Peak

Subordinate everything else to the above Decision

Let Non-Bottlenecks help the Bottleneck Everyone work at the Rate of the Bottleneck

Elevate the Process Constraint

Add more people or instruments Train

Remove the Constraint and Re-evaluate the Process

New Bottlenecks will emerge Repeat the Steps

The GOAL – Theory of Constraints Dr. Eliyahu M. Goldratt 1981 Step 4

Balanced System

Cycle Time = Demand

- Maximum Productivity
- Minimum Waste
- High Efficiency
- Predictable TAT
- Smooth Operations

Example Balance Workload for Immunoassays in Reference Lab

Accomplished by Configuring Menus on Each Instrument to Achieve Maximum Throughput while meeting TAT

Common Causes of Unbalanced Workloads

- 1. The amount of <u>workload</u> at each operation involved in the overall process.
- 2. <u>Fluctuations</u> in customer demand, which starve or overburden the production process.
- 3. Inability to implement "production smoothing".

Example

Like Instruments Not Balanced on a Track

Further analysis required to determine why...

Tests 5,018 of Total Tests 7,688 (Percent 65%)

Tests 2,670 of Total Tests 7,688 (Percent 35%)

Process to Balance Workloads

- 1. Determine customer demand (what's needed and by when)
- 2. Implement a workplace organization process, improve process flow, reduce changeover times.
- 3. Complete time studies on workflows at each workstation
- 4. Implement a pull system.
- 5. Evenly distribute the workload between like workstations.
- Schedule the work in small 'Kanban' quantities.

Real Time Management of All Operational Domains and Workflows in Your

Laboratory

Process

- 1. Forecast Demand
- 2. Determine Capacity
- 3. Exploit Constraints
- 4. Balance Workloads <Repeat>

