# **Easy Ways to Fix Microbiology's Five Biggest Problems** Anne Beall BS, MT, Solutions Consultant,

bioMérieux, Durham, NC

# **Objectives**

- \* List 5 of the most common problems in microbiology laboratories seen today
- Discovering those problems in your laboratory
- Gathering data
- Possible solutions

# What do we know .....



# Microbiology the science

# ♦ Flooded with variability

## & Specimen types - not just blood, serum or plasma

- $\diamond$  Body parts arm, ear, lung
- $\diamond$  Affliction Abscess, wound, pain
- ♦ Procedures Aspirate, surgical, swabbing
- $\diamond$  Specimen urine, stool, bronch wash
- Specimen Containers

## $\diamond$ Causative agent -

- ◊ Fungus, Viruses, Parasites, bacteria
- $\diamond$  Agents of bioterrorism and reportable organisms



# What do we know...

- Microbiology the mystery
  - ♦ Investigation
  - Examination
  - Diagnosis
- Microbiology the process
  - Mostly manual, very little automation in the last 30 plus years
    - ♦ Prone to errors?
  - Complexity of processes
    - ♦ Media selection, incubation temperature, atmospheric conditions
    - $\diamond$  Decontamination
    - ♦ Concentration
    - ♦ Gram Stain, Culture, Ag testing, PCR, Chromogenic media etc.

# What do we know .....

# Microbiology the knowledge

- Aging Work Force
- Heavy reduction in Medical Technologist programs
- Developing a skilled microbiologist takes a significant amount of time and resources
- ♦ Volumes are increasing



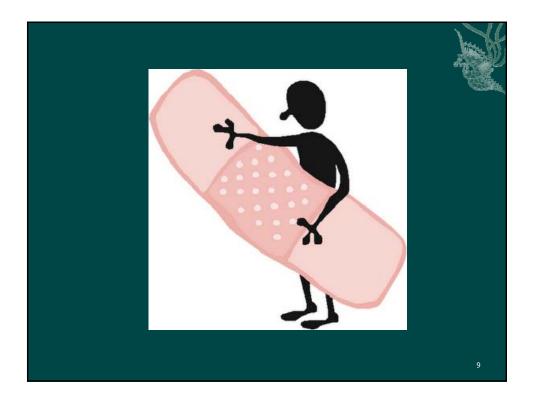
# What have we done...

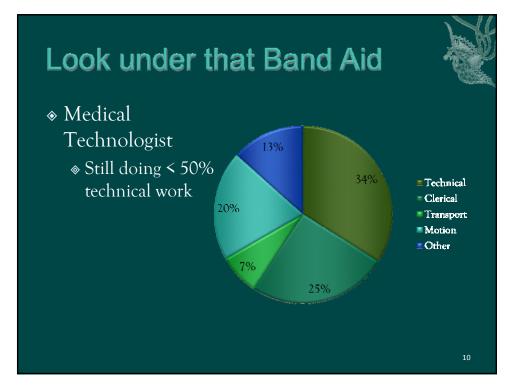


# Staffing

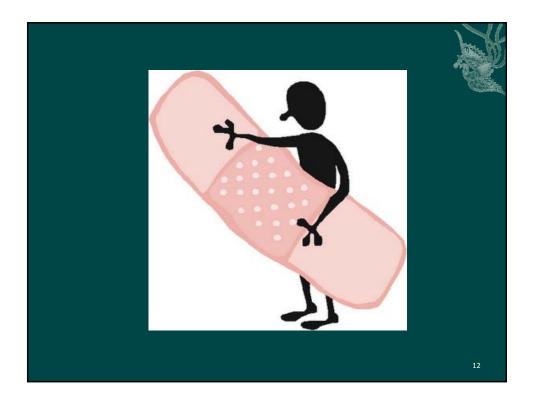
- Recognized that MT programs have closed and recruiting is difficult
- Recognized that baby boomers are about to retire
  - ♦ FMLA
  - Sick leave
  - ♦ Disability




# **Staffing Solution**


# Add Lab Assistants

- ♦ Plate specimens
- Non-technical task
- Stocking/re-stocking
- ♦ Other
- Add Labor


















# **IDENTIFY THE REAL PROBLEMS**



# SPECIMEN COLLECTION

# Doing it Right the Frist Time

- Collect quality specimens
  - Blood Culture
  - Sputum
  - ♦ Swab
  - ✤ Tissue for OR
  - No swab for AFB and Fungus
  - & Stools... It's complicated



# "Garbage in = Garbage out"

\* Limit the number of acceptable specimen containers

# Contamination leads to false positive results



- ⊗ ≥ 30% urine cultures are contaminated
- ♦ 50% of the contaminated are worked up
- ♦ Increasing
  - Non-value added activities
  - ♦ Labor & cost
  - $\diamond$  Workload





# Cost of urine contamination

# ♦ 30% contaminated urine samples

| 150            |
|----------------|
| 45             |
| 23             |
| 69 min         |
| 69 min/day     |
| \$14,125/year  |
| \$115.00/day   |
| \$ 42,000/year |
|                |

Total Estimated Annual Savings = \$ 56, 125

# Blood culture contamination

Labor Savings

1. Weinstein MP et al. CID 24: 584-602,1997

| Monthly                                         |                |
|-------------------------------------------------|----------------|
| Number of Blood Cultures (2 bottles)<br>50/day  | 1500           |
| Positivity Rate (range 9-12%)                   | 10%            |
| # of positive Blood Cultures                    | 150            |
| 40% are contaminated Cultures (2 bottles)       | 60             |
| Avg Cycle time for New Positive bottle          | 21 min/bottle  |
| Total non-value added activity                  | 42 hrs/month   |
| Annual Cost of Labor (based on \$70,000 salary) | \$ 16,960/year |

# **Blood Culture contamination** cost

| Literature        | Year | Extra LOS<br>(Days) | Cost<br>(Per Contam) | Cost<br>(2004 U\$)* |
|-------------------|------|---------------------|----------------------|---------------------|
| Bates et al.      | 1991 | 4.3                 | \$4,385              | \$7,761             |
| Souvenir et al.   | 1995 | N/A                 | \$1,000              | \$1,350             |
| Weinbaum et al.   | 1996 | N/A                 | \$2,500              | \$3,275             |
| Surdulescu et al. | 1998 | 4.5                 | \$6,743              | \$8,294             |

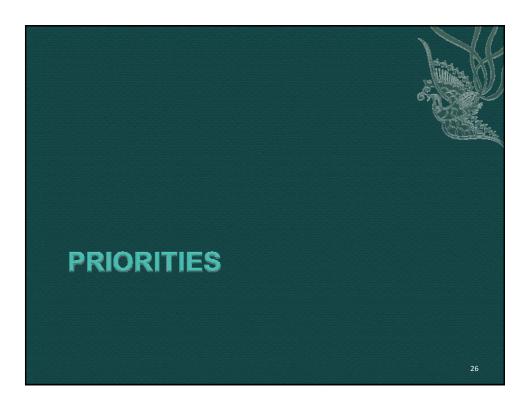
Table created from material in the listed references

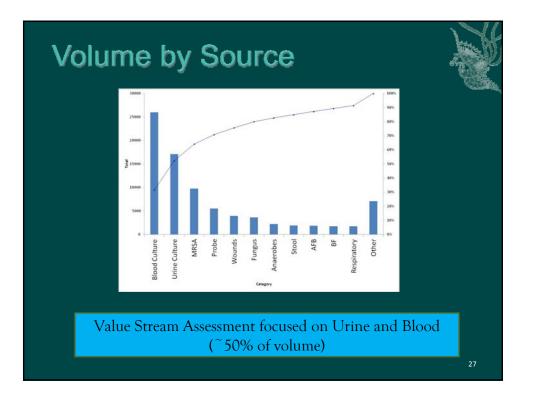
\* △Medical Care CPI to 2004 (1991 = 77%, 1995 = 35%, 1996 = 31%, 1998 = 23%)

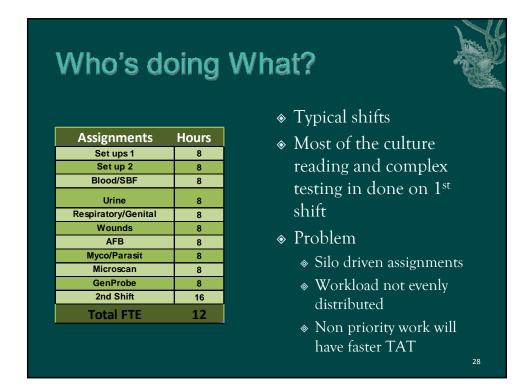
- Source: 1. Bates et al. JAMA 1991 Jan; 265(3): 365-9 2. Souvenir et al. J. Clin. Micro. 1998 Jul: 36(7): 1923-1926 3. Weinbaum et al. J. Clin. Micro. 1997 Mar; 35(3): 563-565 4. Surdulescu et al. Clin. Perform. Qual. Health Care. 1998 Apr.Jun; 6(2): 60-2

| Do the math                                   |                |  |
|-----------------------------------------------|----------------|--|
| Monthly                                       |                |  |
| # of positive Blood Cultures                  | 150            |  |
| # of Contaminated Blood Cultures              | 60             |  |
| # of patients (4 bottles)                     | 15             |  |
|                                               |                |  |
| Avg Cost of Contaminated Blood<br>Culture*    | \$5,000        |  |
| Total Cost                                    | \$75,000/month |  |
| Estimated Annual Cost                         | \$ 900,000     |  |
| * Avg cost from 2004 contamination cost slide |                |  |
| Total Estimated Annual Savings                | s = \$ 916,960 |  |



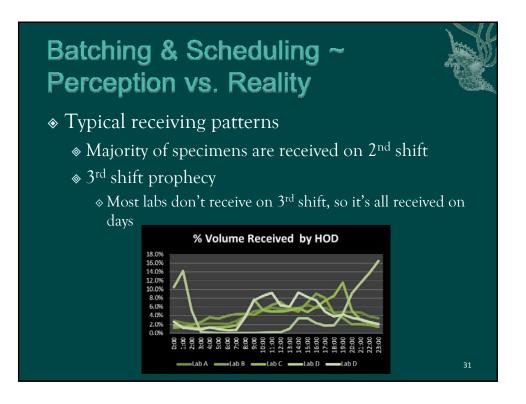

# Solution to Specimen Collection





- Why pay attention to specimen collection?
  - \$\$\$\$\$
  - ✤ Bad specimens lead to False positive results
- Specimen Collection
  - ♦ Ensure proper collection
    - ♦ Educate
    - $\diamond$  Monitor
    - ♦ Enforce
    - ♦ Sustain
  - Oon't give up
- Automation











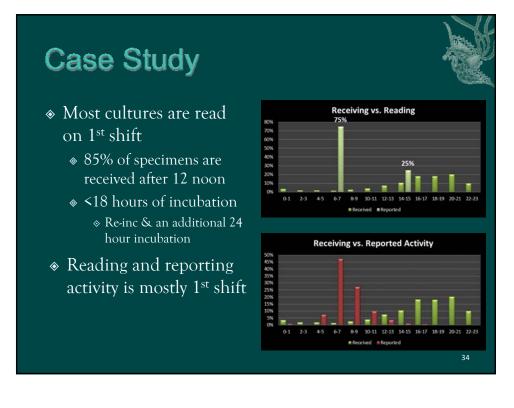


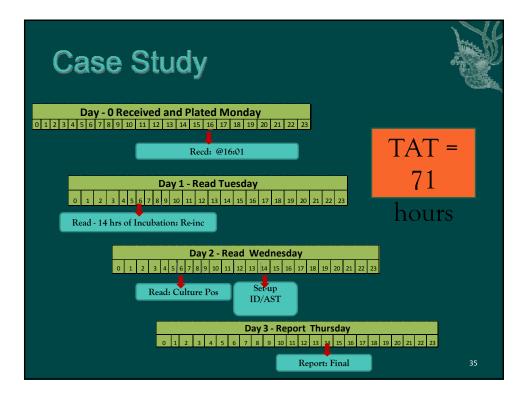





# What is Really Going On

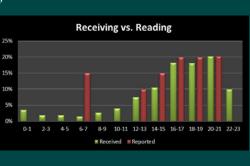
| Shift     | Α     | В     | С     | D     |
|-----------|-------|-------|-------|-------|
| 1st Shift | 52.5% | 48.5% | 59.7% | 52.6% |
| 2nd Shift | 49.2% | 54.2% | 48.4% | 10.8% |
| 3rd Shift | 17.2% | 24.2% | 12.1% | 5.6%  |


- ♦ Microbiology is no longer a 1<sup>st</sup> shift operation
- & 50% or more of specimen volume is received on  $2^{nd}$  shift
  - ♦ Are they being processed?


# **Closer Look at the Process**

- Urine Cultures as example
- \* The minimum time line is 34 hours




 If sample is received on 2<sup>nd</sup> shift then it is likely getting an additional 24 hours due to reading schedule

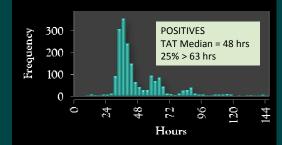




# Solution – Match reading to receiving patterns

- Create smaller batches
- Operation of Lab need to be driven by receiving pattern
- Reading and reporting activities match the receiving pattern
- Benefits
  - Reduce stress
  - Improve efficiency
  - ♦ Reduce TAT by 25%






# Why Should You Care

- A significant amount of volume comes form out-reach
- & LOS
- Antibiotic therapy
- ✤ Risk of HAI
- Patient outcomes



### **Received to Final Result**



- Note the 24 reading & reporting patterns
- ♦ Build in at a min 32 hrs. value-added activities
  - Non-value added activities such as over-incubation, waiting, re-work drive the TAT



# Solution – Know Your TAT

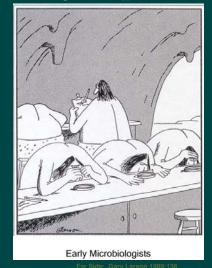


- Identify the high volume cultures and high priority cultures
- ✤ Determine base line TAT
- Find what drives the outliers
- Engage in rapid improvement process for immediate results



# Status Quo




- \* "This is the way we have always done it!"
- "We have been doing it like this since I've been here" ~ 30 years
- Clinically exhaustive microbiology after 3 days is it really clinically significant?

# **Old School Stuff**

- Using Chop Meat Media
- Using Thioglycolate broths on every wound culture
- \* 48 hr. Urine cultures
- E. coli O157 & Campy cultures instead of EIA methods
- ✤ Exhaustive anaerobic cultures
- Isolator for Blood Culture

# Citizens. Against. Virtually. Everything





- Microbiology is changing
- More automation is being introduced
- Microbiology techs need to smell it, touch it and grow it
- ♦ Beware of C.A.V.E. people
- "Status quo" is no longer meeting the needs
- Educate, commit and implement change

# Summary

- Specimen quality as an indicator for specimen collection practices
- Balance resources with priorities for the department
- How are you batching and when at a minimum eliminate the 24 hour batch
- \* TAT it's about the patient
- Out with the "Old", Microbiology is changing



