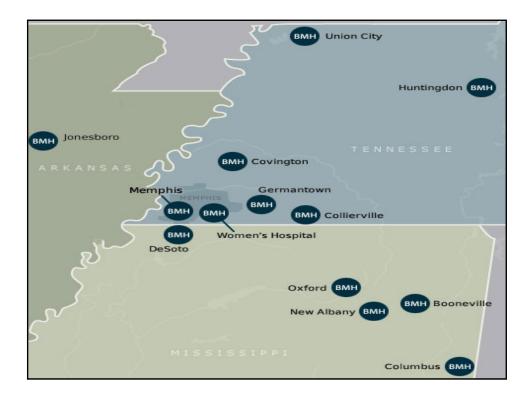
How Lean Helped Us in Transfusion Services and Blood Banking – and with the Hospital's Other Clinical Services


Joan G. Freeman, MS, MT(ASCP)SBB Baptist Memorial Hospital Memphis Division of Transfusion Medicine

#### Baptist Memorial Health Care System

14 hospitals

eight in Tennessee
five in Mississippi
one in Arkansas







## LEAD: Leadership Education and Development

December 2009: Kick-off Manager/Director Meeting

Key Words at Key Times
Rounding

Lean Thinking

### Lean Thinking

relentless effort to systematically reduce waste while improving the flow of value to the customer

#### **Start Up Goal**

Use Lean 6S to clean work area to improve and enhance workflow

- Sort
- Straighten
- Shine
- Standardize
- Sustain
- Safety

# <section-header><section-header><text><image><image><image><image>

## 6S Results

•Excess visual noise and other clutter removed



Before



After

## LEAD: Leadership Education and Development

September 2010: Presentation of Lean Projects • BAC - Surgery • GI Lab

Radiology

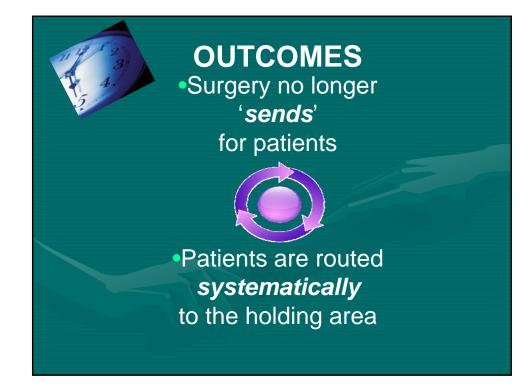
# BMH Memphis SURGERY 1<sup>st</sup> CASE START TIMES



#### **LEAN Project**

- Compare next day OR schedule with completed schedule of PAE exams
- Identify patients who have completed PAE with focus on the 1<sup>st</sup> case starts

(exclude all inpatients)


#### **LEAN Project**



Patients with complete PAE who do not need any lab, prep, T&C etc.

- -change clothes in the BAC
- go immediately to the holding area where assessment is completed and charted
- are accompanied to the holding area by a family member









increased time for nurse to focus on 1<sup>st</sup> case patients that *have not* had their PAE performed
huge decrease in traffic in the area in the morning
decrease in noise level and phone calls

# OUTCOMES



#### Anesthesia

starts with the patient sooner since 1<sup>st</sup> cases are in the holding area

(45 min to 1<sup>1</sup>/<sub>2</sub> hours prior to start time)

BMH-MEMPHIS GI LAB LEAN PROJECT 2010

## Introduction

• Streamline Inventory in the GI Lab

-Inventory Reduction

–Cost Reduction

#### **Project Summary**

 conduct Lean Assessment to identify improvement opportunities

 Biopsy forcep technology has not been updated in the department in 10 years

 Forceps are purchased in small quantities, while usage is high

#### **Current State**

- Use large number of biopsy forceps
- Purchase multiple smaller quantities
  - Cost of purchasing small quantities is greater than purchasing in large quantities
  - New technology available will replace two of the current forceps with one forcep

#### **Cost Savings**

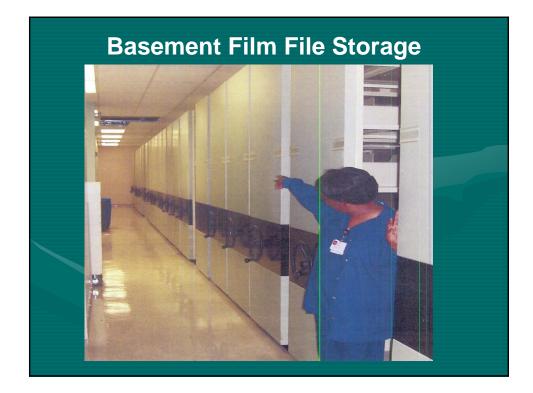
Current Biopsy Forceps Cost - \$400.00 /box 20 Cost - \$95.00 /box 5 New Biopsy Forcep Cost - \$425.00 /box 40

Order in boxes of 40 instead of 20 decreases the price per forcep from \$20.00 to \$10.62



#### **Additional Benefits:**

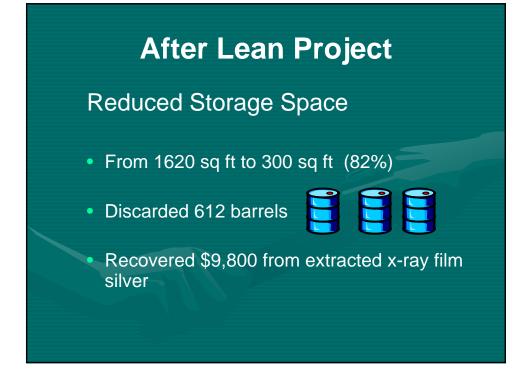
#### New (RJ4) forcep has


 a stainless head vs. the old copper head Stainless Steel is a thinner metal, allowing for a sharper, cleaner bite, and less tearing of the tissue

two fenestrated holes vs. one making specimen removal easier

Lean Project 2010 BMH Memphis Radiology

#### **Project Scope**


- Clean & Reorganize Basement
  - -1620 sq feet / 13,000 cubic feet
    - X-ray films 3 BMH hospitals
    - Storage boxes from Echo, Cath Lab, and Patient Financial Services





#### Process

Sort Films
Keep pediatric films until patient is 19 years old
Keep mammograms for 10 years from last date of visit



### After Lean Project using 8 isles vs 53 of storage



Lean Project 2009

BMH Memphis Transfusion Service

#### BMH Memphis Transfusion Service

- AABB Accredited Immunohematology Reference Laboratory
- Provides diverse range of blood products and services
  - 21 FTEs (includes 13 ProVue Techs)

#### **Objectives**

- Invest in automation to ensure best-possible use of our staff
- Determine optimal placement of an existing and new ProVue analyzer
- Identify and facilitate improvements in specimen receipt and testing
- Enhance optimization of intellectual capital

Work Practice Analysis Team OCD Senior Consultant on-site 1 day-all three shifts

> Trained in Process Excellence Methodology

Susan South, MAOM, MT(ASCP) SBB Six Sigma Black Belt ValuMetrix Senior Consultant



#### **Business Needs**

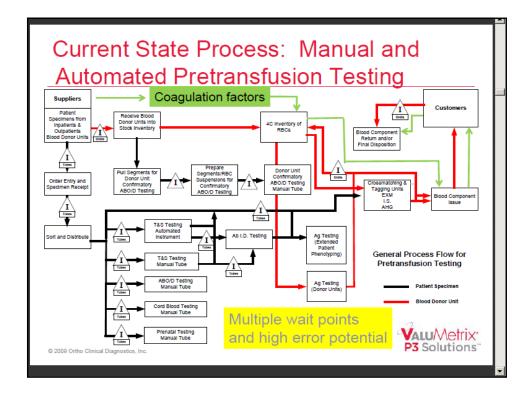
Optimize intellectual capital
Increase operational capacity
Enhance process effectiveness and overall quality of services
Optimal placement for pre-transfusion testing instrumentation

#### Work Practice

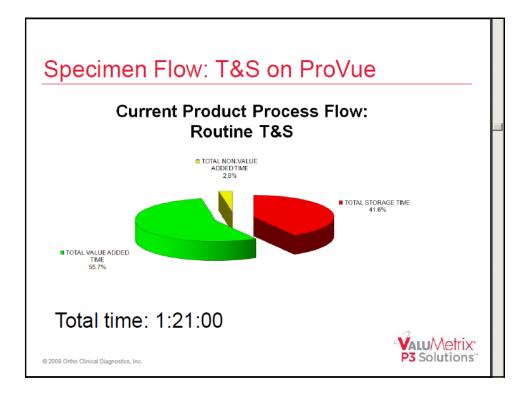
Collection Method Interviewed leadership personnel and general staff

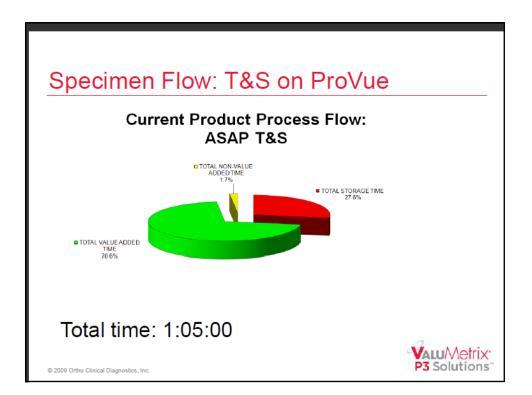
#### Documented:

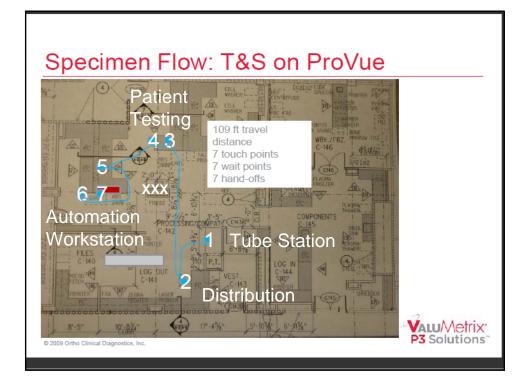
- •Specimen flow
- •Operator process flow
- Process opportunities
- •Physical plant opportunities


#### **Optimal Analyzer Location**

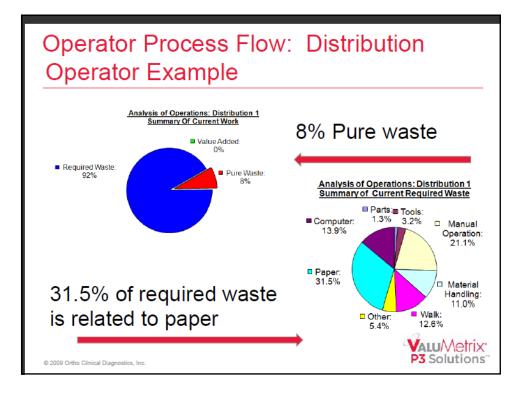
- Follow flow of orders to test result release
- Note walk patterns
- Interview staff
- Take digital photos
- Minimize distance traveled by staff and samples

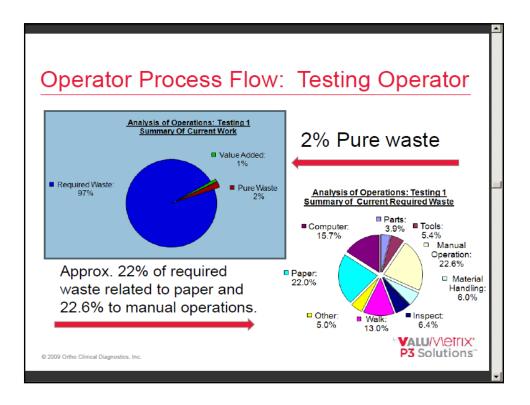

#### Current State Process Strengths


#### •Site leadership

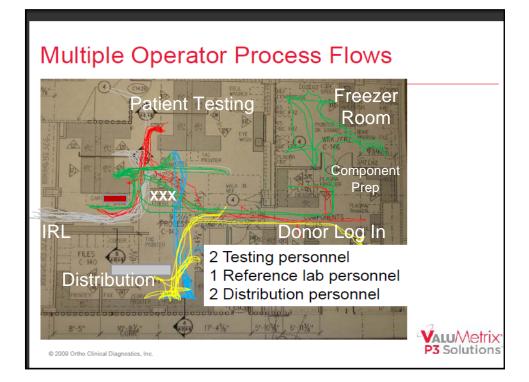

Automation implementation experience
Electronic crossmatch implementation
Team of enthusiastic personnel
Sense of teamwork among personnel
Emphasis on quality and safety




| Sum                             | mary:         | Process S               | teps                  |
|---------------------------------|---------------|-------------------------|-----------------------|
| Category                        | High<br>Level | Defect<br>Opportunities | % Defect<br>Reduction |
| Manual<br>Tube 2 cell<br>screen | 18            | 112                     | 15%                   |
| Manual Gel                      | 10            | 58                      | 56%                   |
| ProVue                          | 4             | 7                       | 95%                   |
|                                 |               |                         |                       |

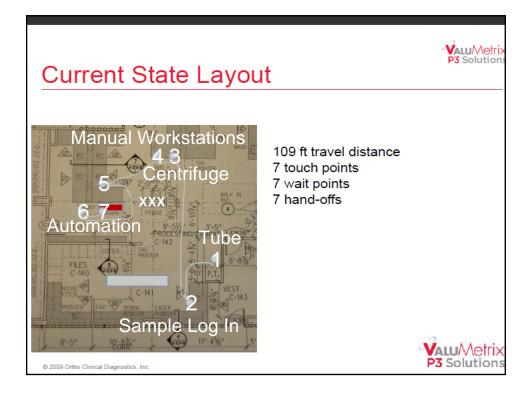




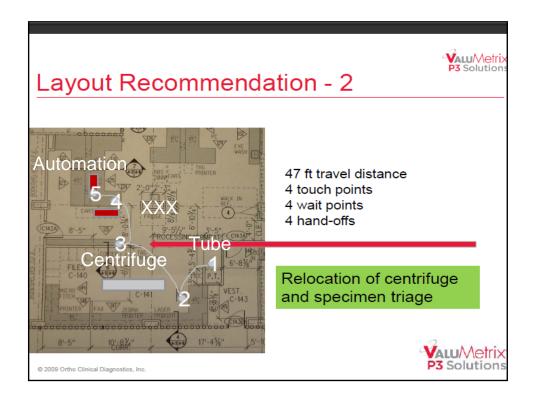

| Specimen Flow                |             |          |  |  |  |  |  |
|------------------------------|-------------|----------|--|--|--|--|--|
| Category                     | Routine T&S | ASAP T&S |  |  |  |  |  |
| Current Time                 | 1:21:00     | 1:05:00  |  |  |  |  |  |
| Approximate<br>Expected Time | 0:52:00     | 0:49:00  |  |  |  |  |  |
|                              |             |          |  |  |  |  |  |

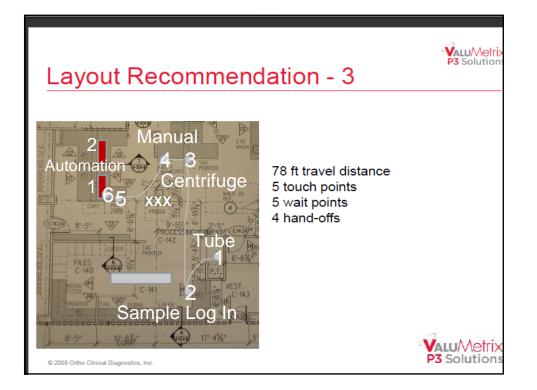






| <b>Operator Process Flow</b> |        |        |        |        |        |        |  |
|------------------------------|--------|--------|--------|--------|--------|--------|--|
| Category                     | Dist 1 | Dist 2 | Dist 3 | Test 1 | Test 2 | Test 3 |  |
| Current<br>Distance          | 1332   | 439    | 1614   | 1024   | 884    | 2045   |  |
| Value<br>Added               | 0%     | 0%     | 0%     | 1%     | 9.9%   | 0%     |  |
| Required<br>Waste %          | 91.9   | 100    | 100    | 96.8   | 89.7   | 83.9   |  |
| Pure<br>Waste %              | 8.1    | 0      | 0      | 1      | 9.9    | 0      |  |





#### **Future State Process**

- Decrease error
   potential
- Standardize work
- Optimize automation
- Decrease process complexity
- Enhance service capability
- Review protocol: redundant forms, paperwork, labels, testing algorithms
- Put tools at point of use
- 5S
- Increase work space
- Standardize work assignments









| Specimen Flow                      |             |          |  |  |  |  |  |
|------------------------------------|-------------|----------|--|--|--|--|--|
| Category                           | Routine T&S | ASAP T&S |  |  |  |  |  |
| Current Time                       | 1:21:00     | 1:05:00  |  |  |  |  |  |
| Projected Time<br>Reduction        | 36%         | 25%      |  |  |  |  |  |
| Projected<br>Distance<br>Reduction | 47%         | 58%      |  |  |  |  |  |
|                                    |             |          |  |  |  |  |  |

| <b>Operator Process Flow</b>               |        |        |        |        |        |        |  |
|--------------------------------------------|--------|--------|--------|--------|--------|--------|--|
| Category                                   | Dist 1 | Dist 2 | Dist 3 | Test 1 | Test 2 | Test 3 |  |
| Projected<br>Reduction<br>in Time %        | 16.5   | 20.3   | 0      | 24.5   | 12     | 16.4   |  |
| Projected<br>Reduction<br>in Distance<br>% | 27.5   | 74.8   | 0      | 26.7   | 43.2   | 0      |  |
|                                            | 21.0   | 71.0   |        |        | 10.2   |        |  |

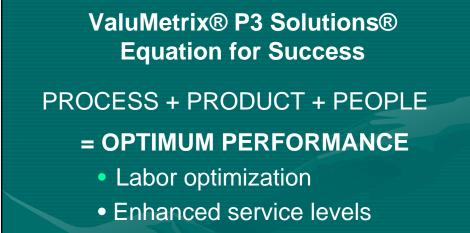
| Result Summary |                                |          |          |           |           |  |  |  |
|----------------|--------------------------------|----------|----------|-----------|-----------|--|--|--|
|                |                                | Pre-Lean | Pre-Lean | Post-Lean | Average % |  |  |  |
|                | Category                       | Rout TS  | ASAP TS  | TS        | Reduction |  |  |  |
|                | Receipt<br>in Lab to<br>Result | 1:21:00  | 1:05:00  | 0:49:00   | 30%       |  |  |  |
|                | Touch<br>Points                | 7        | 7        | 4         | 43%       |  |  |  |
|                | Process<br>Steps               | 18       | 18       | 4         | 78%       |  |  |  |
|                | Defect<br>Opportunities        | 112      | 112      | <7        | 95%       |  |  |  |
|                |                                |          |          |           |           |  |  |  |

#### **Result Summary**

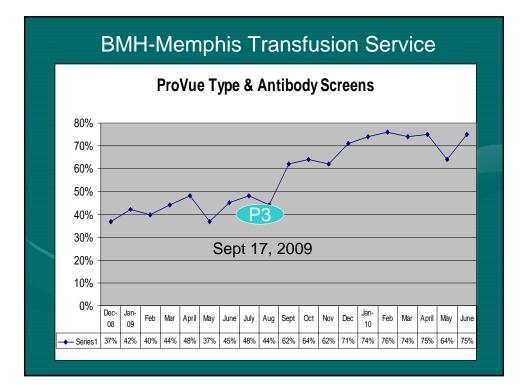
- 30% reduction in turnaround times for type and screen testing
- 25% reduction in operator time
- 95% reduction in testing process error potential
- 78% reduction in process steps for routine testing

#### ValuMetrix® P3 Solutions® Equation for Success

#### PROCESS


- Layout based on Lean principles
- Workstation design
- Optimal process flow to and through testing systems

#### PRODUCT


- High-quality analyzer and test methodologies
  - Minimal system
     maintenance

#### PEOPLE

- Increased percent of value added activity
  - Ergonomically correct design
- Staff engaged in continuous improvement



Cost containment



## **Result Summary**

- Eliminate set up of manual tube ABO & Rh
- Reduction in overall reagent cost of greater than \$35,000 per year

#### LESSONS LEARNED

- Perform Lean 6S continually
- Be a change agent long term
- Use swiss cheese approach to nibble away at all the opportunities uncovered
- Fast track the process for major projects using a consultant
  - ValuMetrix® P3 Solutions<sup>™</sup> offered as value added incentive to purchase 2<sup>nd</sup> ProVue

#### **Future Lean Projects**

Blood wastage reduction

- management of temperature-validated containers
- interpretation of RBC temperature indicators

Create SharePoint Site for all Cerner Millennium Sites (6 hospitals)