Microbiology Meets Process Improvement: Secrets and Tricks of the Trade That Produce Big Gains

Anne R Beall, BS MT November 3, 2010

Objectives

- Differentiate microbiology lab practices from other departments in the laboratory
- Explain how Lean principles apply and transfer to the clinical microbiology lab
- Identify areas of opportunity for improving efficiency in microbiology
- Describe how employing process improvements through Lean improves TAT

Microbiology as it operates yoday is on a collision course...

- In the last 30 years Microbiology processes have remained relatively unchanged
 - Mostly manual work
 - Dependent on organism growth
 - Prone to error in many areas (labeling, streaking of plates, etc.)
- Growing Culture Volumes & Number of tests required
 - Increasing antibiotic resistance ("D" test, Hodge Test, ESBL, KPC, VRE)
 - Diversifying methods of testing (e.g., molecular)
 - Mandatory MRSA screens...

... with an Iceberg

- Microbiology laboratories are expected to do MORE, deliver FASTER results, with FEWER resources
- Aging Work Force
 - Heavy reduction in Medical Technologist programs
 - Developing a skilled microbiologist takes a significant amount of time and resources

Laboratory Administrators need to look to the future

- Focus on activities that create value for the patient, the clinician and the hospital
- Eliminate non-value added activities
- Look at automation

"Status quo" is no longer meeting the needs

Workflow and process improvement will chart a course to better future Chart your course

Secrets and Tricks to navigate to a successful future

- 3 Key Mantras
 - Limit the number of steps/touches
 - Keep it simple (KISS) at all time
 - It's all about the patient

Start at the beginning

- Collect quality specimens
 - Blood Culture
 - Sputum
 - Swab
 - Tissue for OR
 - No swab for AFB and Fungus
 - Stools.... It's complicated

Limit the number of acceptable specimen containers

"Garbage in = Garbage out"

Collect specimens in container used for testing/culture

- Urine & Stool
 - Shared between departments
 - Have multiple tests
 - Split or Pour-off
 - Some tests require preservatives

Contamination leads to false positive results

- Clinically relevant microbiology vs. Exhaustive microbiology
- 3 or more colony types are considered contaminated
- If you are not using boric acid
 - ≥ 30% urine cultures are contaminated
 - 50% of the contaminated are worked up
 - Increasing
 - non-value added activities
 - Labor & cost
 - Workload

Cost of urine contamination

30% contaminated urine samples

Avg # of urines per day	150	
30% contaminated	45	
50% of contaminated are worked-up	23	
3 minutes to work up a positive culture	69 min	
Total non-value added activity	69 min/day	
Annual Cost of Labor (based on \$52,000 salary)	\$10,500/year	
Cost of reagents avg \$ 5.00/work-up	\$115.00/day	
Annual Reagent spent on contamination	\$ 42,000/year	

- Aliquot at point of collection
 - By Nurse
- Preserve sample
 - Boric acid

Standardize container & Collect by Nurse

- Eliminate pour-offs
- Relabeling
- Reduce Contamination

A look at Stool specimens

- Not a huge volume but...
- Multiple requirements for testing
 - Preserved, temperature, etc..
- Stool pathogens finicky

- 2nd Highest volume of specimens sent to microbiology
- Should we look at collection?

Blood culture contamination

> 40% of all Positive Blood Cultures may represent contaminants. ¹

Monthly	
Number of Blood Cultures (2 bottles)	1500
Positivity Rate	10%
# of positive Blood Cultures	150
40% are contaminated Cultures (2 bottles)	60
Avg Cycle time for New Positive bottle	21 min/bottle
Total non-value added activity	42 hrs/month
Annual Cost of Labor (based on \$52,000 salary)	\$ 12,600 /year

1. Weinstein MP et al. CID 24: 584-602,1997

Blood culture contamination cost

Literature	Year	Extra LOS (Days)	Cost (Per Contam)	Cost (2004 U\$)*
Bates et al.	1991	4.3	\$4,385	\$7,761
Souvenir et al.	1995	N/A	\$1,000	\$1,350
Weinbaum et al.	1996	N/A	\$2,500	\$3,275
Surdulescu et al.	1998	4.5	\$6,743	\$8,294

Table created from material in the listed references

* \(\Delta Medical Care CPI to 2004 (1991 = 77%, 1995 = 35%, 1996 = 31%, 1998 = 23%)

2. Souvenir et al. J. Clin. Micro. 1998 Jul; 36(7); 1923-1926 3. Weinbaum et al. J. Clin. Micro. 1997 Mar; 35(3); 563-565 4. Surdulescu et al. Clin. Perform. Qual. Health Care. 1998 Apr-Jun; 6(2): 60-2

Bureau of Labor Statistics website: http://www.bls.gov/data/home.htm

Blood culture contamination additional impact

- 20% increase in laboratory costs. ¹
- 39% higher anti-microbial charges. ¹
- ~ \$1000 per patient more in inappropriate therapy costs for false positive. ²
- What about HAI?
 - 1. Bates DW et al. JAMA 1991; 265: 365-9
 - 2. Souvenir D et al. 1998; JCM 36: 1923-6

Do the Math		
Monthly		
# of positive Blood Cultures	150	
# of Contaminated Blood Cultures	60	
# of patients (4 bottles)	15	
Avg Cost of Contaminated Blood Culture*	\$5,000	
Total Cost	\$75,000/month	
Annual Cost	\$ 900,000	
* Avg cost from 2004 contamination cost slide		

Standardize specimen collection & containers

- Simplify specimen processing
- Eliminate re-labeling errors
- Improve Specimen quality
- Eliminate pour-offs
- Reduce cost

Specimen Processing

- How are specimens received?
- Who is receiving specimens?
- When are specimens received?

Organize at the Front end....

- How are specimens received in your laboratory?
 - Courier
 - Microbiology has to go an pick up
 - Pneumatic tube system
 - Robot
- Who is receiving the specimens?
 - Central receiving
 - Microbiology

Impact of Delay on Critical Specimen

Table 1				
Dicc i. 00 D.i c	D-41 4- L- TA	T C T	. 1	D 14

	TAT			
	<1 h	≥1 h	Difference	P
Time to detection (h)	13.7	13.6	0.1 -3.2	.7860 <.0001
Mortality rate (%)	10.1	19.2	-9.1 0.5	.0389
Positive length of stay (d)* Variable costs (\$) Male sex (% of group) Age (y)	7.9 9,543 47 69.2	7.7 9,361 49 66.6	0.2 182 -2 2.6	.7920 .9150 .7773 .3054

© American Society for Clinical Pathology

Am J Clin Pathol 2008;130:870-876 873

Decreased Mortality Associated With Prompt Gram Staining of Blood Cultures, Barenfanger Joan, et al. Am J Clin Pathol 2008;130:870-876.

Clinical Studies

- "...patients with less than 1 hour TAT had a statistically significant reduction in mortality. Maintaining high quality coverage of blood cultures as soon as they become positive may be in the best interests of patients; this study supports constant "24/7" coverage of these instruments."
- "We also have documented that with sufficient effort, changes in processing and staffing can result in significant improvements in TATs, even during times that are difficult to staff."
- Decreased Mortality Associated With Prompt Gram Staining of Blood Cultures, Barenfanger Joan, et al. Am J Clin Pathol 2008;130:870-876.

Establish and Monitor Specimen Processing targets

- Received to plating (Bottleneck area)
 - 2 hours
- Plating to incubator (Bottleneck area)
 - 2 hours
- Where are you today ?

Reading Cultures Tips

- Gain efficiency by reading like cultures e.g. urine, stools, throat etc..
 - Common normal flora
 - Common pathogens
 - Same workflow
 - Training can be focused and expedited

Triage positive from negative cultures

- Helps manage workload e.g. 40-50% of urines are negative
- Negative cultures results are entered real time
 - Cycle time seconds
- Positive cultures require additional steps e.g. biochemical, ID/AST
 - Cycle times minutes
- Decreases time to ID/AST
 - Introduce continuous flow NO batching
- Implement multiple reads per day
 - Depending on your volumes & receiving volumes

Implement same day reporting of ID/AST

- ID/AST results available to be reported in afternoon
 - Reduces WIP
 - Improves TAT by 12-24 hours

Secrets and Tricks

- Review specimen collection & containers
- Review contamination rates
 - Urine culture
 - Blood culture
- Look for bottlenecks in specimen processing
 - Investigate automation
- Read cultures by specimen type
 - Small batches
 - Same day reporting

Conclusion Improve your processes before your laboratory becomes a tragedy