10 Most Common Laboratory Accreditation Deficiencies: How to Solve and Prevent **Recurrences**; Measuring the **COPQ** Associated With Deficiencies Lucia Berte

LABORATORIES MADE BETTER!

Most Common Deficiencies

2

Documents and "procedure manual"

- Records of competence assessment
- Problems with PT requirements
- Validation of modifications of FDA approved-cleared tests

Correcting an Inspection Deficiency

"If you always do what you've always done, you'll always get what you've already got!"

The Underlying Problem

Documents do not reflect the order in which work actually happens. Δ

What Causes This Problem?

The mindset of the "CLIA 14 elements" of a "procedure manual."

Interpreting the Regulation

§493.1251 Standard: Procedure Manual. (a) <u>A written procedure manual for all</u> tests, assays, and examinations performed by the laboratory must be available to, and followed by, laboratory personnel.

Literal interpretation

- "A" as in "one"
- "Procedure manual" as in a single manual
- "for all tests, assays, examinations" as in, "All tests... in one manual"
- No mention of non-testing activities (eg, management or QMS)

CLIA 14 Elements

#	Element	
1	Patient preparation	
2	Microscopic examination	
3	Steps, calculations, and interpretations	
4	Reagent and materials preparation	
5	Calibration and calibration verification	
6	Reportable range	
7	Control procedures	

Element				
Corrective actions				
Method limitations				
10 Reference intervals				
11 Alert or critical values				
12 Literature references				
Result reporting				
Test system unavailability				
	ElementCorrective actionsMethod limitationsReference intervalsAlert or critical valuesLiterature referencesResult reportingTest system unavailability			

"Tests, assays, and examinations" are only one part of a long series of **processes** that comprise laboratory workflow

> <u>all</u> of which are needed to be
> <u>performed correctly</u> to reduce the risks to patient safety.

Example: Sample Receiving Process (Non-Testing)

Surgical Pathology Process

Simple Flow Chart

Cross-functional "Swim-lanes" Flow Chart

CLSI Guideline QMS02, 6th edition

Why Do We Have Problems?

- We try to make the CLIA-A2LA-JC-CAP-COLA inspectors happy
- Hint: Wrong customer!!
- We weren't trained to write good documents
- Hint: CLIA-based SOPs are not good documents

- We think that one outline or format fits all, when it really doesn't
- Hint: There are 4 types of documents
- We don't know how to structure information to be useful for the reader
- Hint: But we could certainly <u>learn</u>!

Which Is More Likely to be Read and Understood?

17

BEFORE: Example of a traditional document

LOCKOUT / TAGOUT ON ELECTRICAL EQUIPMENT

A. For circuit breakers that have lockout capability, you must use locks for each circuit breaker disconnect switch.

- (1) Get the appropriate number of locks and tags.
- (2) Prepare the lockout tags and lockout and tagout the necessary circuit breaker.
- (3) Disconnect the switches.
- (4) Turn disconnect switches to the "Off" position.
- (5) Lockout the switches and attach lockout tags.

B. IMPORTANT: WHEN DISCONNECTING SWITCHES ALWAYS STAND TO THE HINGED SIDE OF ANY BREAKERS AND FACING THE OPPOSITE DIRECTION BEFORE TURNING THEM OFF.

- C. For circuit breakers that do not have lockout capability, you will need to use tagging.
 - (1) If tagging will provide the same level of safety as using a lock, then you can use a tag without a lock as long as you also take supplemental measures to ensure adequate safety. These measures would include removing isolating circuit elements or blocking control switches.
 - (2) Stand to the hinged side of any breakers and face the opposite direction before using.
 - (3) Turn disconnect switches to the "Off" position.
 - (4) Attach tags

ONLY A QUALIFIED PERSON CAN LOCKOUT AND TAGOUT CIRCUIT BREAKERS. IF YOU ARE NOT QUALIFIED TO PERFORM A LOCKOUT / TAGOUT, YOU MUST FIND A QUALIFIED PERSON TO COMPLETE THE PROCEDURE.

AFTER: The same document

A New Model for Procedure<u>s</u> Manual<u>s</u>

REAL LIFE

- Work does not happen in alphabetical order!
- Work **always** happens in <u>processes</u>
- A process outlines the needed procedures (instructions)

Where does process information come from?

"People support what they help create."

Logic for Procedures Manuals

Put the flowchart first!

- Followed by the much shorter instructions for the one activity, in the order in which they are performed
- OR Reference to operator's manual or instrument screen shot
- Example of any properly completed form(s)
- Additional needed information

Suggested Table of Contents

Process flowchart

- Operations Procedures
- Analyte Attribute Table(s), where needed
- Quality Control section (QC Plan)

- Calibration section
- Maintenance section
- Troubleshooting section
- Examples of properly completed forms
- Other? As needed

Process Flowchart 1.

Have blank document template in Word

- Headers, footers
- Document control information

Embed Visio file as Object in Word file

Process Flowchart 2.

- Some labs put next to each box
 - Section number
 - Procedure name/number
- Take advantage of hyperlink feature for electronic documents

Analyte Attribute Table for Automated Procedures

	Protime	PTT	Thrombin Time
Clinical utility			
Sample Type			
Minimum sample volume			
Method limitations			
Reference range			
Critical values			

"If you can't describe what you are doing as a process then you don't know what you are doing."

W. Edwards Deming

Cost Thinking

What is the failure cost of correcting an external assessment deficiency?

Mostly Labor Cost When Correcting a Deficiency

Who	What		Who	What
Supervisor	(Root cause analysis?)		Supervisor	Document management
Supervisor	Drafts response		Manager	Reviews and approves revised documents
Manager and/or Lab	Reviews and approves response		and/or Lab Director	
Director			Supervisor	Training on new
Supervisor	Finalizes response		and staff	documents
(Supervisor)	(Revises response if not accepted)		Supervisor	Competence assessment, as
Supervisor	Redrafts documents			neeueu

Don't Be A Prisoner!

- The "14 elements of a procedure manual" are 31 years old, derived from an outdated guideline (NCCLS GP02) from <u>40 years ago</u>.
- These elements do not represent laboratory <u>workflow</u>.

Write for Your Documents' Primary Customer – Your Personnel!

- Meet the intent of the requirement
- In a way that helps personnel get it right

What Should Happen

32

Don't hold your breath – (NCCLS GP02 \rightarrow process thinking in 20<u>02</u>)

Be proactive by meeting the intent.

5 Reasons Why "Process"

All work is sequential processes

- ISO15189 and CLSI QSEs are management and workflow process-based QMSs
- Lean: Reduce process waste
 Six Sigma: Reduce process variation

- Engaging with practitioners: Through the test ordering and results interpretation processes
- Change leadership: *Process* and cost thinking

Requirements vs Guidance

REQUIREMENTS

WHAT must be done

NOT how to do it **GUIDANCE**

HOW it could be done

Recommendations of good practice

Resources

- Andersen B, Fagerhaug T, Henriksen B, Onsoyen LE. Mapping Work Processes, 2nd ed. Milwaukee, WI: ASQ Quality Press, 2008. www.asq.org
- CLSI. QMS18, 1st edition Process Management

CLSI. QMS02, 6th edition Development and Management of Laboratory Documents

- https://www.informationma pping.com/en/informationmapping/informationmapping/examples
- CLSI. QMS20, 1st edition
 Understanding Cost of
 Quality in the Laboratory

"If we don't change our direction we're going to wind up where we're headed."

Native American proverb