FMEA and FTA Analysis

Why it is Coming to Your Hospital and Your Laboratory

Background

- In-hospital deaths from medical errors at 195,000 per year*
- About 1.14 million patient safety incidents occurred in the 37 million Medicare hospitalizations*
- 12.5% of incorrect and delayed lab results adversely impact patient

health (Clin chem 2002;48:691-698)

* Healthgrades study, 2004 spanning 2000-2002

JCAHO Requirements - 2001

- LD 5 The leaders ensure implementation of an integrated patient safety program throughout the organization
- LD 5.2- Leaders ensure that an ongoing proactive program for identifying risks to patient safety and reducing medical/health care errors is defined and implemented
 - Includes requirement to evaluate "events,failure modes, analysis and correction" in at least one highrisk process per year.

High Risk Processes

- PI 4.2-Processes that involve risk or may result in sentinel events
 - Medication use
 - Operative or other procedures
 - Use of blood and blood components
 - Restraint use
 - Seclusion, when part of care
 - Care/services provided to high risk populations
 - Resuscitation

Process Required by JCAHO

- 1. Identify process steps (Process map)
- 2. Identify where "undesirable variation" may occur (failure modes)
- For each identified failure mode identify the effects on patients and how serious the effect is "criticality – severity and probability of occurrence"
- 4. For most critical items conduct root cause analysis (FTA or fishbone)

Process Required by

JCAHO, continued

- 5. Redesign the process and/or underlying systems to minimize the risk of the failure mode or protect patients from the effects (control measures)
- 6. Test and verify redesigned process
- 7. Identify and implement measures of effectiveness (metrics or key indicators)
- 8. Implement a strategy for maintaining effectiveness (monitor and adjust)

ISO 15189:2007 Medical laboratories

- Particular requirements for quality and competency
 - Requires Continual Improvement Process (4.12)
 - Requires identification potential sources of non-conformance (4.12.1)
 - Requires improvement to those areas, review, and monitoring (4.12.2, 4.12.3, 4.12.4.)

Why Risk Management?

- Improves the safety of your organization
- Improves the quality of your processes
- Improves the quality of your output
- Can have significant return on time investment (in cost avoidance)

Two Parts to Process Mapping

- Flow chart and table of process steps work together to support areas for further analysis.
- Flow chart shows what; process table includes what and expands to who and how.

Steps for Process Mapping

- Determine the boundaries (beginning and end)
- List the steps (Use verbs for actions)
- Sequence the steps
- Draw appropriate symbols around the steps
- Chart the steps (Use sticky notes)
- Check for completeness
- Finalize the flowchart
- Fill out the table of who and how

	Process Table					
I	What	Who	How			
	Collection list / labels generated	Lab assistant	Automated process Human interaction with patient			
	Patient identified	Phlebotomist				
	Blood collected	Phlebotomist	Trained phlebotomist			
	Specimens labeled	Phlebotomist	Human interaction with label and tube			
	Specimens transported to lab	Phlebotomist	Pneumatic tube on each floor			

What step	Who	How
1 Select high risk process	Leaders in hospital or lab	Joint Commission list
2 Map the process	Multi-disciplinary group	CLSI GP2-A5
3 ID failure modes and effect	Multi-disciplinary group	HFMEA or equivalent
4 Find root cause of critical failure modes	Multi-disciplinary group	FTA or fishbone diagrar
5 Redesign process	Multi-disciplinary group	Option analysis
6 Test and implement	Process owners	Various site specific methods
7& 8 Measure and monitor	Leaders in hospital or lab	Event report, improvements, near misses

When to use Process Maps

- When you are initiating a new process
- When making improvements to a current process
- When you need to visualize a current process
- When you need to stop a process (to evaluate impact to other processes)
- When you are evaluating human involvement in a process

Benefits of Process Maps

- Maps are intuitive
- Easy to Understand
- Unambiguous
- Shows entire process in one picture
- Shows man/machine interactions

Limitations of Process Maps

- Can be too distracting based on size and detail
- Can take on a life of their own and be more important than the process itself
- Is not a stand alone analysis/control tool. It is a beginning step to further risk analysis (FMEA, HACCP or FTA)
- Critical points not identified unless part of the plan

FMEA Terms

- Failure When a system performs in a way which was not intended
- Effect The impact the failure has on the process or end patient
- Severity How bad the effect is
- Occurrence How often will the cause happen
- **Detection** Ability to **know** that the failure has occurred

Steps to perform the Process FMEA

- 1. Identify the process to be analyzed
- 2. Map the process steps
- List potential failure modes (how can the step go wrong)
- 4. List potential effects of the failure
 - What happens when this failure occurs?
 - Also known as severity

Steps to perform the FMEA

- 5. Perform root cause analysis of the failures determine likelihood of occurrence
 - Consider using a Fault Tree Analysis or cause and effect diagram to ferret out causes
- 6. Prioritize the failures based on predetermined severity, likelihood of occurrence (and ability to detect) ratings
- 7. Determine control measures (fix the process)

Process: In Potential Failure Mode	Patient Blood Potential Causes for fill Failure	Collection Potential Effects of Failure	Severity J	ocess Step: 1. C Current Controls	Collec	tion list and labels generate Recommended Action	d Who. How. When
Incorrect collection list	Incorrect data entered	Incorrect patient drawn		None		Barcode all sources of data.	
generated	Software	Dolou in				Validate SW	
	Incorrect date requested	Incorrect results reported				Add SW requirement that only allows for current date request.	
Incorrect	Incorrect	Incorrect					
labels generated	data entered	patient drawn					
	Software failure	Delay in					
	Incorrect	patient care					
	list	Incorrect					
	requested	results					

When to use FMEA

- When starting a new process to help uncover potential problem areas in the process and insert controls
- When resources are limited and you want to focus on the highest risk items (determined by RPN)
- When you understand the function of each specific task or item and the associated failure modes

Benefits of FMEA

- Allows for a very structured analysis
- Captures multiple causes and effects of failures
- Links control (measures) plans within one analysis/planning document
- Allows relative risk ranking for prioritization of control activities

Fault Tree Analysis (FTA)

- A top down analysis that starts with the effect and evaluates all the potential causes of that event.
- Creates a logical "tree" of events
- Lowest "root" is the root cause or transfer to another analysis
- Forces analysis of interactions

Definitions

- Failure When a system performs in a way which was not intended
- **Control Measure** something done to lower the risk of a failure or effect of the failure

When to Use FTA

- To brainstorm root causes
- When you want to evaluate the interactions between systems and humans or several systems/processes
- When you want a variety of options of where to place control mechanisms
- When you are better suited to visuals than words.

Benefits of FTA

- Helps to identify many causes of a failure mode
- Helps to identify interrelationships
 between multiple causes
- Allows the analyst to determine the most effective area to put a control measure
- Allows the analyst to determine multiple controls
- Can be qualitative or quantitative

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Next Steps to Compliance

- 1. Pick a High Risk Process in your functional area
- 2. Map the process
- 3. Find and fix the weak links using
 - FMEA
 - FTA (or cause and effect diagram)
- 4. Control and monitor the process
- 5. Repeat steps 1-4 on next process

Where To Get Help www.va.gov - Templates and training on Healthcare FMEA CLSI GP2-A5 – Laboratory Documents: Development and Control – Guidance on Process Maps www.ahrq.gov Agency for Healthcare Research and Quality - Publication on Mistake-Proofing the Design of Healthcare Processes. Failure Mode an Effects Analysis in Healthcare: Proactive Risk Reduction-Joint Commission Resources.

