

New Analytics & Automation in Limited Spaces: Principles for Best Practice Lab Design

Best Practice Lab Design

Critical Design Considerations

PEOPLE

Success depends on adoption by the whole team

PROCESS

He who touches least wins.....Maybe

INFORMATION

Creating & moving information is the job, optimizing delivery of service is the goal

Key Objectives *Best Practice Lab Design*

Key Objectives *Best Practice Lab Design*

Dagen Högertrafik *Are We Ready for Change?*

The day in 1967 that Sweden changed from driving on the left-hand side of the road to the right.

The Impact of Change on ROI

How Much of Your Success is Dependent on Operator's Adoption?

The ADKAR Model

Organizational Change is the Sum of Individual Change

Key Objectives *Best Practice Lab Design*

The Art of Optimizing Workflow

Reduce TAT and Errors

Multiple Touches, Multiple Steps TAT Errors he who touches least wins!

Analytics, Automation, & Floor Plan

Roche

Analytics, Automation, & Floor Plan

Lean Flow in the non-Automated Lab

Lean Flow in the non-Automated Lab

Opportunity

Optimize Staff Allocation, ID & Minimize Wait States, Drive Visual Controls & Leverage LOS to Eliminate Batch Process

Analytics, Automation, & Floor Plan

Analytic Consolidation, TAT, & Horsepower

Analytic Consolidation

- Touches, Cost, & Space- More Analyzers Means More of Each
- Vendor Standardization- Same as Above w/ Single Contact Point

- On Board Turn Around Time
 - Test Mix & Capacity at Receipt

12 Min at the 90th Percentile

Analytic Consolidation, TAT, & Horsepower

Analytic Consolidation

- Touches, Cost, & Space- More Analyzers Means More of Each
- Vendor Standardization- Same as Above w/ Single Contact Point

- On Board Turn Around Time
 - Test Mix & Capacity at Receipt
- Capacity When it is Needed
 - Peak Hours

Analytic Consolidation, TAT, & Horsepower

Analytic Consolidation

- Touches, Cost, & Space- More Analyzers Means More of Each
- Vendor Standardization- Same as Above w/ Single Contact Point

- On Board Turn Around Time
 - Test Mix & Capacity at Receipt
- Capacity When it is Needed
 - Peak Hours
 - 1 Line Down

Analytic Consolidation, TAT, & Horsepower

Analytic Consolidation

- Touches, Cost, & Space- More Analyzers Means More of Each
- Vendor Standardization- Same as Above w/ Single Contact Point

- On Board Turn Around Time
 - Test Mix & Capacity at Receipt
- Capacity When it is Needed
 - Peak Hours
 - 1 Line Down
 - Maintenance Schedule

Analytic Consolidation, TAT, & Horsepower

Analytic Consolidation

- Touches, Cost, & Space- More Analyzers Means More of Each
- Vendor Standardization- Same as Above w/ Single Contact Point

Analytic Horsepower

- On Board Turn Around Time
 - Test Mix & Capacity at Receipt
- Capacity When it is Needed
 - Peak Hours
 - 1 Line Down
 - Maintenance Schedule
 - Growth

Challenge

Detailed Quantitative Analysis and Simulations are Necessary to Tailor the Analytic Solution to Your Specific Objectives

Roche

Managing Capacity, Capability, & Flow

Analytics, Automation, & Floor Plan

Automation Functionality

Capabilities: Every Touch Drives TAT, Quality, Productivity & <u>Design Space</u>

- In Lab Receipt- Does the Automation & Your IT Infrastructure Support?
- Multiple Disciplines Chem, Heme, Coag, & Reference?
- Multiple Sample Types- Serum, Plasma, PPP, Whole Blood, & Body Fluids?
- Multiple Tube Sizes- Choose One or Support All?
- Screw & Push Cap Recapping- In lab storage vs. Full Send-Out Processing?
- Stat Processing- Both Automation & Analytics?
- Centrifugation- Chemistry & Coagulation?
- Sample Quality- Tube/ Test Match & Hemolysis, Icterus, and Lipemia?
- Add-On & Refrigerated Storage- One Choice or Two?

Capacities & TAT: The Same Detailed Quantitative Analysis and Simulations are Necessary to Tailor the Automation Solution to Your Specific Objectives

Automation Functionality

Capabilities: Every Touch Drives TAT, Quality, Productivity & <u>Design Space</u>

- In Lab Receipt- Does the Automation & Your IT Infrastructure Support?
- Multiple Disciplines Chem, Heme, Coag, & Reference?
- Multiple Sample Types- Serum, Plasma, PPP, Whole Blood, & Body Fluids?
- Multiple Tube Sizes- Choose One or Support All?
- Screw & Push Cap Recapping- In lab storage vs. Full Send-Out Processing?
- Stat Processing- Both Automation & Analytics?
- Centrifugation- Chemistry & Coagulation?
- Sample Quality- Tube/ Test Match & Hemolysis, Icterus, and Lipemia?
- Add-On & Refrigerated Storage- One Choice or Two?

Capacities & TAT: The Same Detailed Quantitative Analysis and Simulations are Necessary to Tailor the Automation Solution to Your Specific Objectives

Opportunity

Careful Design that Exploits the Available Capabilities Can Liberate Existing Workstation Space for Use w/ Automation

Analytics, Automation, & Floor Plan

Roch

Floor Plan & Configuration Trade Offs

88

Trade Offs: Automation Systems Specifications

- Service Space
- Track Lengths
- Connection Points
- Direction of Flow

Challenge

Each of These Categories, Common to All Manufacturers, Can Present Significant Trade Offs to Space and Flow

Managing Capacity, Capability, & FlowFloor Plan & Configuration: Example Design Challenge

Roche

Managing Capacity, Capability, & FlowFloor Plan & Configuration: Example Designed Process Flow

Managing Capacity, Capability, & FlowFloor Plan & Configuration: Example Actual Process Flow

ChallengeOutgrew Design Capacity In 5 yrs.Added IA Analyzers for ID Testing

Expansion Plans Driving Even More Growth Needs to Fully Standardize Pre-Analytics

Roche

Managing Capacity, Capability, & FlowFloor Plan & Configuration: New Design Example Lab

Managing Capacity, Capability, & FlowFloor Plan & Configuration: New Design Example Lab

Roche

Floor Plan & Configuration: New Design Example Lab

Capabilities: Every Touch Drives TAT, Quality, Productivity & Design Space

In Lab Receipt- Transitioned to a New LIS w/ Unique ID & All Inpatient to are pre-Accn'd.

•Multiple Disciplines- Consolidate and Expanded Chem, Heme Delivered in Analyzer Racks, Coag Spun and Delivered, & Reference Testing Aliquotted, Labeled, Screw Capped for Tx.

•Multiple Sample Types- Serum, Plasma, PPP, & Whole Blood.

•Multiple Tube Sizes- 13x75mm up to 16x100mm Onboard.

•Recapping- Push Caps for In lab storage & Screw Caps for Send-Outs.

•Stat Processing- Multiple Levels on Automation & Analytics.

•Centrifugation - Chemistry & Coagulation.

•Sample Quality- Tube/ Test Match & Hemolysis, Icterus, and Lipemia. on Automation.

•Add-On & Refrigerated Storage- Add-On Buffer Accommodates Rolling 8 Hour Availability. Capacities & TAT: Extensive Modeling w/ Multiple, 5 Day LIS Data Sets to Assess Capacity , Model Growth, & TAT

Key Objectives *Best Practice Lab Design*

What Segments of TAT is your Design Controlling?

Receipt Onboard Auto to Result Release w/ Extensive Autoverification

What Segments of TAT is your Design Controlling?

What Segments of TAT is your Design Controlling?

What Segments of TAT is your Design Controlling?

OPPORTUNITY

Every Touch Drives Variation & Increased TAT Drive to Receipt Onboard Automation & Maximum Autoverification to Deliver Optimum TAT to Physicians

Gaining Control of TAT

New Automation & Analytics Example- LIS Data Analysis

Background

- 3 M Chemistry & Immunoassay Tests per Year
- Live on cobas 8100 & cobas 8000s ~ 10 months
- ED not Equipped w/ Remote Accessioning Devices
- All ED Testing Manually Received, Transported & Loaded on c8100
- Extensive Autoverification

90th Percentile	0:43
Average	0:34
Median	0:31
Ν	343

Gaining Control of TAT

New Automation & Analytics Example- Audit Analysis

Audit Analysis

- 5 Day Parallel Operational Data from Cobas 8100 & Cobas 8000s
- TAT Analysis- Tubes Loaded on Input Buffer to Result Available

OPPORTUNITY

Clearly Understand the Components of TAT that Your Design is Controlling.... If it's Unacceptable, Change the Design

Key Objectives *Best Practice Lab Design*

Summary

Incorporating Best Practice into Lab Design

- Manage the Change w/ the Entire Team
 - Engage w/ a Partner who's Standard Practice Incorporates Change Management in the Assessment Process & Project Plan
- Quantitatively Define the Desired Level of Service Delivery
 - "What Does Good Looks Like"- Use it as the Project's Guiding Objective
- Analyze, Simulate, & Repeat
 - Engage Your LIS Manger- Become the Expert on your Testing Demands
 - Engage Senior Leadership- Surprise Growth is not Comfortable
 - Engage a Partner who's Nimble and Armed w/ the Most Accurate & Comprehensive Analysis Tools
- Design Associated Manual Processes to Support Automation & Analytics
 - Automating an Inefficient Process Can Lead to an Inefficient Automated Process

Best Practice Lab Design

Critical Design Considerations

PEOPLE

Success depends on adoption by the whole team

PROCESS

He who touches least wins.....Maybe

INFORMATION

Creating & moving information is the job, optimizing delivery of service is the goal

Doing now what patients need next